

Division of Surface Water

Biological Assessment of the Great Miami River

Piqua Power Plant

Miami County, Ohio

November 20, 2009

Ted Strickland, Governor Chris Korleski, Director

Biological Assessment

Great Miami River (Piqua Power Plant Property)

2009

Miami County, Ohio November 20, 2009 OEPA Report EAS/2009-11-8

prepared for State of Ohio Environmental Protection Agency Division of Emergency and Remedial Response

prepared by
Ohio Environmental Protection Agency
Lazarus Government Center
50 West Town Street, Suite 700
Columbus, Ohio 43215

Division of Surface Water Ecological Assessment Section 4675 Homer Ohio Lane Groveport, Ohio 43125

TABLE OF CONTENTS

SUMMARY	3
RECOMMENDATIONS	3
ACKNOWLEDGEMENTS	
INTRODUCTION	
METHODS	
RESULTS	
Stream Physical Habitat	9
Fish Community	10
Macroinvertebrate Community	11
REFERENCES	12
APPENDICES	Α1

EXECUTIVE SUMMARY

Two miles of the Great Miami River were biologically assessed by the Ohio EPA during 2008. Based on the performance of the biological communities, 1.0 mile of the Great Miami River (free-flowing sections) was in full attainment of the designated Exceptional Warmwater Habitat (EWH) aquatic life use, and 1.0 mile (impounded section of river) was partially attaining the designated Warmwater Habitat (WWH) use (Table 1). The partial attainment was due to poor to fair macroinvertebrate communities in the impounded section of river. The impaired condition of the macroinvertebrate community within the dam pool was the result of a lack of flowing water and poor habitat conditions. In sampling throughout the state, the macroinvertebrate communities from dam pool sites are typically impaired and underperform the fish community. The impaired condition of the macroinvertebrate community in the dam pool was the result of poor macroinvertebrate habitat conditions caused by the presence of the dam and not the result of any potential contaminants associated with the Piqua power plant.

RECOMMENDATIONS

The aquatic life use designation of Warmwater Habitat in the impounded section of the Great Miami River in the Piqua area, and Exceptional Warmwater Habitat in the free-flowing segments has been confirmed in this study and previous Ohio EPA biological and water quality studies, and should be maintained. Within the Ohio Water Quality Standards, one EWH section of the Great Miami River occurs between RM 116.7 (SR 66) and RM 130.2 (Sidney water works dam). Sampling during this survey documented that the above noted EWH segment of the Great Miami River should be extended further downstream to RM 115.3. Physical habitat conditions, river pool depths, and recreational activity verified that the Primary Contact Recreation use is appropriate for the Great Miami River.

ACKNOWLEDGEMENTS

The following individuals are acknowledged for their contribution to this report.

Stream sampling: Mike Gray, David Altfater, Ben Rich, Chuck Boucher Data support: Dennis Mishne

Report preparation and analysis: David Altfater, Mike Gray

Reviewers - Jeff DeShon, Marc Smith

INTRODUCTION

Biological and physical habitat quality was assessed in a 1.5 mile section of the Great Miami River during 2009. This study was undertaken to assess water resource conditions in the Great Miami upstream, adjacent, and downstream from the former City of Piqua Power Plant property. This water resource project was undertaken as a Voluntary Action Program technical assistance request.

Specific objectives of the evaluation were to:

- Assess biological conditions in the Great Miami River by evaluating fish and macroinvertebrate communities,
- Determine the aquatic life use attainment status of the Great Miami River with regard to the Warmwater Habitat (WWH) and Exceptional Warmwater Habitat (EWH) aquatic life use designations codified in the Ohio Water Quality Standards, and
- Perform the work to satisfy the requirements of VAP rule OAC 3745-300-09.

The Great Miami River is located in the Eastern Corn Belt Plains (ECBP) ecoregion. The Great Miami River is currently assigned the Warmwater Habitat aquatic life use designation for the impounded segment of river within the City of Piqua, and Exceptional Warmwater Habitat in the free-flowing sections.

Aquatic life use attainment conditions are presented in Table 1, and sampling locations are detailed in Table 2 and graphically presented in Figure 1.

Table 1. Aquatic life use attainment status for sampling locations in the Great Miami River, Piqua area, 2009. The Index of Biotic Integrity (IBI), Modified Index of Well-being (Mlwb), and Invertebrate Community Index (ICI) scores are based on the performance of the biological community. The Qualitative Habitat Evaluation Index (QHEI) is a measure of the ability of the physical habitat to support a biological community. River sites are located in the Eastern Corn Belt Plains (ECBP) ecoregion. In the Ohio Water Quality Standards, the Great Miami River in the study segment is designated Warmwater Habitat (WWH), Exceptional Warmwater Habitat (EWH) or EWH recommended (R). If biological impairment has occurred, the cause(s) and source(s) of the impairment are noted.

Sample Location River Mile	Aquatic Life Use Designation	Aquatic Life Attainment Status	IBI	Mlwb	ICI	Stream ^a Habitat	Aquatic Life Use Impairment Cause/Source ^b
115.4	EWH-R	FULL	56	10.2	52	Excellent	
114.9	WWH	PARTIAL	55	9.1	16-Low Fair*	Fair	Impounded-low flow/ Low head dam
114.4	WWH	PARTIAL	41 ^{ns}	8.9	14-Low Fair*	Fair	Impounded-low flow/ Low head dam
114.0	EWH	FULL	54	10.3	46	Very Good	

BIOCRITERIA											
INDEX - Site Type WWH EWH											
IBI: Boat	42	48									
Mlwb: Boat	8.5	9.6									
ICI	36	46									

^{*} Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

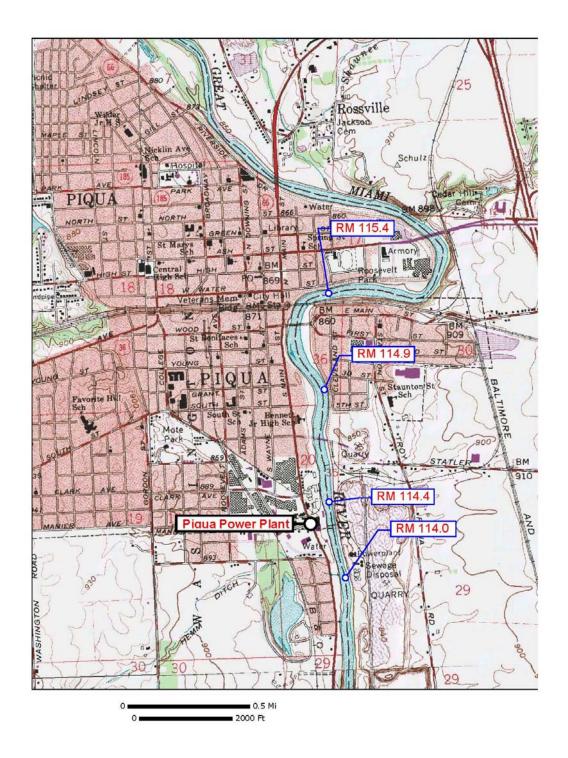

Nonsignificant departure from biocriterion (<4 IBI or ICI units, 0.5 Mlwb units).

Table 2. Sampling locations in Great Miami River, Piqua area, 2009. Type of sampling included fish community (F), and macroinvertebrate community (M).

Stream/ River Mile	Type of Sampling	Latitude	Longitude	Landmark					
115.4	F,M	40.1474	84.2348	Free-flowing river, upstream Piqua City Linear Park					
114.9	F,M	40.1422	84.2373	Impounded river, upstream Piqua Power Plant					
114.4	F,M	40.1348	84.2364	Impounded river, adjacent Piqua Power Plant					
114.0	F,M	40.1293	84.2350	Free-flowing river, downstream Piqua Power Plant & WWTP					

^a Narrative habitat evaluations are based on QHEI scores as follows: Excellent =75-100, Good = 60-74, Fair = 45-59, Poor = 30-44 and Very Poor <30.

Figure 1. Sampling locations in the Great Miami River, Piqua area, 2009.

METHODS

Biological field, data processing, and data analysis methods and procedures adhere to those specified in the Manual of Ohio EPA Surveillance Methods and Quality Assurance Practices (Ohio Environmental Protection Agency 2006b), Biological Criteria for the Protection of Aquatic Life, Volumes II - III (Ohio Environmental Protection Agency 1987b, 1989a, 1989b, 2008a, 2008b), The Qualitative Habitat Evaluation Index (QHEI); Rationale, Methods, and Application (Rankin 1989), and Methods for Assessing Habitat in Flowing Waters: Using the Qualitative Habitat Evaluation Index (Ohio EPA 2006a).

Determining Use Attainment

Use attainment status is a term describing the degree to which environmental indicators are either above or below criteria specified by the Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1). Assessing aquatic use attainment status involves a primary reliance on the Ohio EPA biological criteria (OAC 3745-1-07; Table 7-15). These are confined to ambient assessments and apply to rivers and streams outside of mixing zones. Numerical biological criteria are based on multimetric biological indices including the Index of Biotic Integrity (IBI) and modified Index of Well-Being (Mlwb), indices measuring the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate community. Three attainment status results are possible at each sampling location - full, partial, or non-attainment. Full attainment means that all of the applicable indices meet the biocriteria. Partial attainment means that one or more of the applicable indices fails to meet the biocriteria. Non-attainment means that none of the applicable indices meet the biocriteria or one of the organism groups reflects poor or very poor performance. An aquatic life use attainment table (Table 1) is constructed based on the sampling results and is arranged from upstream to downstream and includes the sampling locations indicated by river mile, the applicable biological indices, the use attainment status (i.e., full, partial, or non-attainment), the Qualitative Habitat Evaluation Index (QHEI), and a sampling location description. Biological results were compared to WWH biocriteria. The Great Miami River is currently listed as a EWH (in the free-flowing sections) and WWH (in the Pigua impounded section) in the Ohio Water Quality Standards.

Stream Habitat Evaluation

Physical habitat is evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Rankin 1989, 1995; Ohio EPA 2006a). Various attributes of the available habitat are scored based on their overall importance to the establishment of viable, diverse aquatic faunas. Evaluations of type and quality of substrate, amount of instream cover, channel morphology, extent of riparian canopy, pool and riffle development and quality, and stream gradient are among the metrics used to evaluate the characteristics of a stream segment, not just the characteristics of a single sampling site. As such, individual sites may have much poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values higher than 60 were generally conducive to the establishment of warmwater faunas while those which scored in excess of 75 often typify habitat conditions which have the ability to support exceptional faunas.

Macroinvertebrate Community Assessment

Macroinvertebrates were collected from artificial substrates and from the natural habitats at the Great Miami River sites. The artificial substrate collection provided quantitative data and consisted of a composite sample of five modified Hester-Dendy multiple-plate samplers colonized for six weeks. At the time of the artificial substrate collection, a qualitative multihabitat composite sample was also collected. This sampling effort consisted of an inventory of all observed macroinvertebrate taxa from the natural habitats at each site with no attempt to quantify populations other than notations on the predominance of specific taxa or taxa groups within major macrohabitat types (e.g., riffle, run, pool, margin). At the two macroinvertebrate sampling sites within a dam pool, two composite artificial substrate samples were used. One was placed in a wading accessible location near the shoreline in a manner consistent with OEPA historical sampling methods. The other was set on the bottom in mid-channel in water from 5-8 feet deep. Detailed discussion of macroinvertebrate field and laboratory procedures is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989a, 2008b).

Fish Community Assessment

Fish were sampled twice at each Great Miami River site using pulsed DC boat electrofishing methods. Fish were processed in the field, and included identifying each individual to species, counting and weighing fish, and recording any external abnormalities. Discussion of the fish community assessment methodology used in this report is contained in Biological Criteria for the Protection of Aquatic Life: Volume III, Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (Ohio EPA 1989a, 2008b).

RESULTS

Stream Physical Habitat

Physical habitat was evaluated at each fish sampling location. Physical habitat was assessed using the Qualitative Habitat Evaluation Index (QHEI); scores are detailed in Table 3. The two free-flowing sites on the Great Miami River (RMs 115.4 and 114.0) were represented by very good to excellent river habitat, with pool, riffle, and run areas present. Two sites (RMs 114.9 and 114.4) were within the impounded reach of river, where the habitat was 100 percent pool, with little to no flow during the sampling events. The Piqua power plant property is adjacent to the impounded section of river. Both Great Miami River impounded sites were rated as fair habitat quality.

Table 3. Qualitative Habitat Evaluation Index (QHEI) scores and physical attributes for fish sampling sites in Great Miami River, 2009.

																				M	WI	H A	ttr	ibı	ıte	s								
					W	/W	H A	۱ttr	ibı	ute	s	High Influence Moderate Influence																						
Key QH Cou	Y EI mpone	nts Habitat Rating	No Channelization or Recovered	Boulder/Cobble/Gravel Substrates	Silt Free Substrates	Good/Excellent Substrates	Moderate/High Sinuosity	Extensive/Moderate Cover	Fast Current/Eddies	Low-Normal Overall Embeddedness	Max. Depth >40 cm	Low-Normal Riffle Embeddedness	Total WWH Attributes	Channelized or No Recovery	Silt/Muck Substrates	No Sinuosity	Sparse/ No Cover	Max. Depth <40 cm (WD,HW sites)	Total High Influence Attributes	Recovering Channel	Heavy/Moderate Silt Cover	Sand Substrates (Boat)	Hardpan Substrate Origin	Fair/Poor Development	Low Sinuosity	Only 1-2 Cover Types	Intermittent & Poor Pools	No Fast Current	High/Mod. Overall Embeddedness	High/Mod. Riffle Embeddedness	No Riffle	Total Moderate Influence Attributes	(MWH H.I.+1)/ (WWH+1) Ratio	(MWH M.I.+1)/ (WWH+1) Ratio
Great Mia Year: 200																																		
115.4	76.5	Excellent											7						0						•			•				2	0.13	0.38
114.9	56.0	Fair						•		•	-		5				•		1					•	•			•	•		•	5	0.33	1.17
114.4	57.0	Fair		-				-			•		4				♦		1		•			•	•			•	•		•	6	0.40	1.60
114.0	74.0	V. Good							-		•		7				•		1		•				•			•	•	•		5	0.25	0.88

Fish Community

A total of 3,280 fish representing 38 species were collected from the Great Miami River in the Piqua area between July and September, 2009. Relative numbers and species collected per location are presented in Appendix Table 2 and IBI metrics are presented in Appendix Table 1. Sampling locations were evaluated using Warmwater Habitat or Exceptional Warmwater biocriteria. All four fish sampling locations evaluated during this study were achieving the applicable Warmwater Habitat or Exceptional Warmwater Habitat fish biocriterion. Three of the sites had very good to exceptional fish communities, and pollution intolerant species comprised 7 – 12% of the fish populations.

Table 4. Fish community summaries based on pulsed D.C. boat electrofishing sampling conducted by Ohio EPA in the Great Miami River, Piqua area, from July - September, 2009. Relative numbers are per 1.0 km. The applicable aquatic life use designation is WWH in the impounded section and EWH in the free-flowing section.

Stream River Mile	Sampling Method	Species (Mean)	Species (Total)	Relative Number	QHEI	Index of Biotic Integrity	Modified Index of Well-being	Narrative Evaluation
115.4	Boat	26.5	31	999	76.5	56	10.2	Exceptional
114.9	Boat	23.0	28	617	56.0	55	9.1	Very Good to Exceptional
114.4	Boat	20.5	25	495	57.0	41 ^{ns}	8.9	Marginally Good to Good
114.0	114.0 Boat 31.0		34	1169	74.0	54	10.3	Exceptional

Ecoregion Biocriteria: Eastern Corn Belt Plains (ECBP)											
INDEX - Site Type WWH EWH											
IBI: Boat	42	48									
Mlwb: Boat	8.5	9.6									

^{*} Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

ns Non-significant departure from ecoregion biocriterion (≤4 IBI units or 0.5 Mlwb units).

Macroinvertebrate Community

The macroinvertebrate communities from the Great Miami were sampled in 2009 using quantitative (artificial substrate) and qualitative (natural substrate multi-habitat composite) sampling protocols. Results are summarized in Table 5. The ICI metrics with the associated scores, and the raw data are attached as Appendix Tables 3 and 4. The macroinvertebrate communities from the free flowing sites above and below the impounded dam pool attained the Exceptional Warmwater Habitat biocriterion. The macroinvertebrate communities from all sites within the impounded dam pool had ICI scores in the poor to low fair range and did not attain the Warmwater Habitat narrative criterion. The impaired condition of the macroinvertebrate community within the dam pool was the result of a lack of flowing water and poor habitat conditions. In sampling throughout the state, the macroinvertebrate communities from dam pool sites are typically impaired and underperform the fish community. The impaired condition of the macroinvertebrate community in the dam pool appeared to be the result of poor habitat conditions caused by the presence of the dam and not the result of any other issues associated with the Piqua power plant.

Table 5. Summary of macroinvertebrate data collected from artificial substrates (quantitative sampling) and natural substrates (qualitative sampling) in the Great Miami River, Piqua area, 2009.

Stream/ River Mile	Density Number/ft ²	Total Taxa	Quantitative Taxa	Qualitative Taxa	Qualitative EPT ^a	ICI	Evaluation
Great Miami River							
115.4	2404	68	39	54	22	52	Exceptional
114.9A -Edge	2420	33	26	23	5	16-Low Fair*	Low Fair
114.9B - Mid	901	-	24	-	-	14-Low Fair*	Low Fair
114.4A - Edge	2709	34	26	16	3	14-Low Fair*	Low Fair
114.4B - Mid	1596	-	19	-	-	<u>10-Poor</u> *	Poor
114.0	3322	66	30	56	18	46	Exceptional

Ecoregion Biocriteria: Eastern Corn Belt Plains (ECBP)										
INDEX WWH EWH										
ICI	36	46								

^a EPT=total Ephemeroptera (mayflies), Plecoptera (stoneflies), and Trichoptera (caddisflies) taxa richness, a measure of pollution sensitive organisms.

^{*} Significant departure from ecoregion biocriterion; poor and very poor results are underlined.

REFERENCES

- Karr, J. R. 1991. Biological integrity: A long-neglected aspect of water resource management. Ecological Applications 1(1): 66-84.
- Karr, J.R., K.D. Fausch, P.L. Angermier, P.R. Yant, and I.J. Schlosser. 1986. Assessing biological integrity in running waters: a method and its rationale. III. Nat. Hist. Surv. Spec. Publ. 5. 28 pp.
- Miner R. and D. Borton. 1991. Considerations in the development and implementation of biocriteria, Water Quality Standards for the 21st Century, U.S. EPA, Offc. Science and Technology, Washington, D.C., 115 pp.
- Ohio Environmental Protection Agency. 2008a. 2008 updates to Biological Criteria for the Protection of Aquatic Life: Volume II and Volume II Addendum. Users manual for biological field assessment of Ohio surface waters. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2008b. 2008 updates to Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006a. Methods for assessing habitat in flowing waters: Using the Qualitative Habitat Evaluation Index (QHEI). Ohio EPA Tech. Bull. EAS/2006-06-1. Div. of Surface Water, Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 2006b. Ohio EPA manual of surveillance methods and quality assurance practices, updated edition. Division of Environmental Services, Columbus, Ohio.
- Ohio Environmental Protection Agency. 2003. Ecological risk assessment guidance manual. Feb. 2003. Division of Emergency and Remedial Response, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989a. Addendum to Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1989b. Biological criteria for the protection of aquatic life: Volume III. Standardized biological field sampling and laboratory methods for assessing fish and macroinvertebrate communities. Div. Water Quality Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987a. Biological criteria for the protection of aquatic life: Volume I. The role of biological data in water quality assessment. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Ohio Environmental Protection Agency. 1987b. Biological criteria for the protection of aquatic life: Volume II. Users manual for biological field assessment of Ohio surface waters. Div. Water Qual. Monit. & Assess., Surface Water Section, Columbus, Ohio.
- Rankin, E. T. 1995. The use of habitat assessments in water resource management programs, pp. 181-208. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Rankin, E.T. 1989. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Div. Water Qual. Plan. & Assess., Ecol. Assess. Sect., Columbus, Ohio.
- Suter, G.W., II. 1993. A critique of ecosystem health concepts and indexes. Environmental Toxicology and Chemistry, 12: 1533-1539.

- United States Environmental Protection Agency (2003). Region 5, final technical approach for developing ecological screening levels for RCRA Appendix IX constituents and other significant contaminants of ecological concern. August, 2003.
- Yoder, C.O. 1995. Policy issues and management applications for biological criteria, pp. 327-344. in W. Davis and T. Simon (eds.). Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making. Lewis Publishers, Boca Raton, FL.
- Yoder, C. O. 1991. Answering some concerns about biological criteria based on experiences in Ohio, *in* G. H. Flock (ed.) Water quality standards for the 21st century. Proceedings of a National Conference, U. S. EPA, Office of Water, Washington, D.C.
- Yoder, C.O. 1989. The development and use of biological criteria for Ohio surface waters. U.S. EPA, Criteria and Standards Div., Water Quality Stds. 21st Century, 1989: 139-146.
- Yoder, C.O. and E.T. Rankin. 1995. The role of biological criteria in water quality monitoring, assessment, and regulation. Environmental Regulation in Ohio: How to Cope With the Regulatory Jungle. Inst. of Business Law, Santa Monica, CA. 54 pp.

APPENDICES - GREAT MIAMI RIVER, 2009

					Numl	ber of				Perce		Rel.No. minus					
River Mile	Туре	Date	Drainage area (sq mi)	Total species	Sunfish species		Intolerant species	Rnd-bodied suckers	Simple Lithophils	Tolerant fishes	Omni- vores	Top carnivores	Insect- ivores	DELT anomalies	tolerants /(1.0 km)	IBI	Modified lwb
Great M	iami R	iver - (14-	-001)														
Year:	2009																
115.40	Α (08/19/2009	867	26(5)	4(5)	6(5)	5(5)	26(3)	55(5)	13(5)	13(5)	12(5)	75(5)	0.0(5)	1010(5)	58	10.4
115.40	Α (09/22/2009	867	26(5)	6(5)	7(5)	4(5)	34(3)	50(5)	22(3)	22(3)	20(5)	57(5)	0.2(5)	654(5)	54	10.0
114.90	Α (08/19/2009	867	23(5)	5(5)	5(3)	2(3)	43(5)	47(5)	18(3)	17(3)	24(5)	59(5)	0.0(5)	496(5)	52	9.0
114.90	Α (09/22/2009	867	21(5)	4(5)	6(5)	3(3)	44(5)	48(5)	12(5)	12(5)	28(5)	60(5)	0.3(5)	548(5)	58	9.3
114.40	Α (08/19/2009	868	19(3)	4(5)	6(5)	1(1)	32(3)	44(3)	29(1)	21(3)	12(5)	66(5)	0.9(3)	322(3)	40	8.5
114.40	Α (09/22/2009	868	20(3)	5(5)	5(3)	2(3)	28(3)	38(3)	24(3)	23(3)	10(5)	66(5)	0.7(3)	410(3)	42	9.3
114.00	Α (07/07/2009	873	30(5)	6(5)	6(5)	4(5)	31(3)	43(3)	11(5)	11(5)	15(5)	70(5)	0.5(5)	736(5)	56	10.3
114.00	Α (08/11/2009	873	30(5)	5(5)	6(5)	4(5)	30(3)	39(3)	20(3)	20(3)	19(5)	59(5)	0.1(5)	1208(5)	52	10.3

^{• -} IBI is low end adjusted.

^{* - &}lt; 200 Total individuals in sample ** - < 50 Total individuals in sample

Appendix Table 2. Fish sampling results for the Great Miami River, Piqua area, 2009.

River Code: 14-001 **Great Miami River** Sample Date: 2009 Stream: River Mile: 115.40 Location: upst. Piqua Power Plant, upst. RR Date Range: 08/19/2009 Time Fished: 4145 sec 09/22/2009 Drainage: 867.0 sq mi Thru: Sampler Type: A Dist Fished: 1.00 km Basin: Great Miami River No of Passes: 2

Species	IBI	Feed	Breed		# of	Relative	% by	Relative	% by	Ave(gm)
Name / ODNR status		Guild			Fish	Number	Number	Weight	Weight	Weight
Quillback	С	0	М		7	7.00	0.70	5.00	6.05	714.29
Black Redhorse	R	1	S	I	57	57.00	5.71	11.65	14.08	204.32
Golden Redhorse	R	1	S	М	136	136.00	13.61	22.94	27.75	168.70
Northern Hog Sucker	R	1	S	М	84	84.00	8.41	11.13	13.46	132.48
White Sucker	W	0	S	Т	16	16.00	1.60	2.59	3.14	162.12
Spotted Sucker	R	1	S		2	2.00	0.20	0.04	0.05	19.00
Smallmouth Redhorse	R	1	S	М	19	19.00	1.90	3.83	4.63	201.68
Common Carp	G	0	М	Т	3	3.00	0.30	7.10	8.59	2,366.67
River Chub	N	1	Ν	I	4	4.00	0.40	0.37	0.44	91.50
Suckermouth Minnow	N	1	S		1	1.00	0.10	0.00	0.00	4.00
Silver Shiner	N	1	S	I	27	27.00	2.70	0.20	0.24	7.41
Rosyface Shiner	N	1	S	I	5	5.00	0.50	0.01	0.01	2.00
Scarlet Shiner	N	1	S	М	3	3.00	0.30	0.01	0.01	2.33
Striped Shiner	N	1	S		109	109.00	10.91	0.72	0.87	6.61
Spotfin Shiner	N	1	М		106	106.00	10.61	0.38	0.46	3.57
Sand Shiner	N	1	М	М	8	8.00	0.80	0.02	0.02	2.38
Bluntnose Minnow	N	0	С	Т	140	140.00	14.01	0.34	0.41	2.41
Central Stoneroller	N	Н	Ν		3	3.00	0.30	0.14	0.17	48.00
Channel Catfish	F		С		1	1.00	0.10	2.15	2.60	2,150.00
White Crappie	S	1	С		1	1.00	0.10	0.08	0.10	81.00
Black Crappie	S	1	С		1	1.00	0.10	0.12	0.14	119.00
Rock Bass	S	С	С		34	34.00	3.40	3.16	3.82	92.99
Smallmouth Bass	F	С	С	М	120	120.00	12.01	8.90	10.76	74.15
Green Sunfish	S	1	С	Т	8	8.00	0.80	0.41	0.50	51.75
Bluegill Sunfish	S	1	С	Р	5	5.00	0.50	0.07	0.09	14.60
Longear Sunfish	S	1	С	М	30	30.00	3.00	0.77	0.94	25.80
Green Sf X Bluegill Sf					1	1.00	0.10	0.15	0.18	150.00
Yellow Perch			М		1	1.00	0.10	0.06	0.07	60.00
Blackside Darter	D	1	S		4	4.00	0.40	0.01	0.01	2.75
Logperch	D	1	S	М	23	23.00	2.30	0.23	0.27	9.87
Greenside Darter	D	1	S	М	19	19.00	1.90	0.07	0.08	3.53
Banded Darter	D	- 1	S	I	21	21.00	2.10	0.04	0.04	1.76
	Mile 7	Total			999	999.00		82.69		
		per of S	Specie	s	31					

Number of Species 31
Number of Hybrids 1

River Code: 14-001 **Great Miami River** 2009 Stream: Sample Date: River Mile: 114.90 Location: upst. Piqua Power Plant Date Range: 08/19/2009 Drainage: 867.0 sq mi Time Fished: 3837 sec Thru: 09/22/2009 Sampler Type: A Dist Fished: 1.00 km Basin: Great Miami River No of Passes: 2

									• •	
Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
Gizzard Shad		0	М		4	4.00	0.65	0.20	0.18	49.50
Quillback	С	0	М		3	3.00	0.49	2.41	2.19	801.67
Black Redhorse	R	1	s	ı	40	40.00	6.48	10.39	9.45	259.67
Golden Redhorse	R	I	S	М	199	199.00	32.25	60.91	55.41	306.05
Northern Hog Sucker	R	I	S	М	24	24.00	3.89	2.94	2.67	122.40
White Sucker	W	0	S	Т	1	1.00	0.16	0.15	0.14	152.00
Spotted Sucker	R	I	S		2	2.00	0.32	0.19	0.17	95.00
Smallmouth Redhorse	R	1	S	М	4	4.00	0.65	1.52	1.38	380.25
Common Carp	G	0	М	Т	3	3.00	0.49	13.97	12.71	4,655.00
Silver Shiner	Ν	I	S	ı	2	2.00	0.32	0.03	0.03	15.00
Striped Shiner	Ν	I	S		10	10.00	1.62	0.13	0.12	12.70
Spotfin Shiner	N	1	М		20	20.00	3.24	0.09	0.08	4.60
Sand Shiner	N	1	М	М	5	5.00	0.81	0.01	0.01	1.40
Bluntnose Minnow	N	0	С	Т	77	77.00	12.48	0.14	0.13	1.79
Channel Catfish	F		С		1	1.00	0.16	0.11	0.10	110.00
Yellow Bullhead		1	С	Т	1	1.00	0.16	0.22	0.20	217.00
Brook Silverside		1	M	М	1	1.00	0.16	0.00	0.00	2.00
White Crappie	S	1	С		1	1.00	0.16	0.05	0.05	52.00
Rock Bass	S	С	С		78	78.00	12.64	8.93	8.12	114.47
Smallmouth Bass	F	С	С	М	79	79.00	12.80	6.36	5.79	80.53
Largemouth Bass	F	С	С		5	5.00	0.81	0.11	0.10	21.00
Green Sunfish	S	1	С	Т	13	13.00	2.11	0.45	0.41	34.74
Bluegill Sunfish	S	1	С	Р	3	3.00	0.49	0.09	0.08	29.33
Longear Sunfish	S	1	С	М	31	31.00	5.02	0.46	0.41	14.71
Blackside Darter	D	1	S		1	1.00	0.16	0.00	0.00	4.00
Logperch	D	1	S	М	5	5.00	0.81	0.08	0.07	15.00
Greenside Darter	D	1	S	М	2	2.00	0.32	0.01	0.00	2.50
Banded Darter	D	1	S	1	2	2.00	0.32	0.00	0.00	1.50
	Mile	Total			617	617.00		109.91		
		ber of S	Specie	es	28	000				
		0								
		ber of I	., ~	-	Ü					

Great Miami River River Code: 14-001 Sample Date: 2009 Stream: Location: adj. Piqua Power Plant Date Range: River Mile: 114.40 08/19/2009 Thru: 09/22/2009 Time Fished: 4171 sec Drainage: 868.0 sq mi Sampler Type: A Dist Fished: 1.00 km Basin: Great Miami River No of Passes: 2

Species	IDI	Feed	Dross	4	# of	Relative	% by	Relative	% by	Avo(am)
Name / ODNR status		Guild			# 01 Fish	Number	% by Number	Weight	% by Weight	Ave(gm) Weight
Gizzard Shad		0	М		2	2.00	0.40	0.07	0.10	32.50
Quillback	С	0	М		11	11.00	2.22	9.00	13.74	817.91
Black Redhorse	R	1	S	ı	18	18.00	3.64	2.48	3.78	137.50
Golden Redhorse	R	1	S	М	109	109.00	22.02	26.07	39.83	239.19
Northern Hog Sucker	R	1	S	М	4	4.00	0.81	0.35	0.54	88.25
White Sucker	W	0	S	Т	2	2.00	0.40	0.73	1.11	362.50
Spotted Sucker	R	1	S		14	14.00	2.83	2.43	3.72	173.72
Smallmouth Redhorse	R	I	S	М	1	1.00	0.20	0.51	0.77	505.00
Common Carp	G	0	М	Т	5	5.00	1.01	16.88	25.78	3,375.00
Silver Shiner	Ν	I	S	ı	7	7.00	1.41	0.05	0.08	7.14
Striped Shiner	Ν	I	S		31	31.00	6.26	0.21	0.32	6.77
Spotfin Shiner	Ν	1	M		52	52.00	10.51	0.20	0.31	3.90
Bluntnose Minnow	Ν	0	С	Т	91	91.00	18.38	0.20	0.30	2.15
Channel Catfish	F		С		1	1.00	0.20	1.70	2.60	1,700.00
White Crappie	S	1	С		1	1.00	0.20	0.09	0.13	85.00
Rock Bass	S	С	С		5	5.00	1.01	0.35	0.54	70.60
Smallmouth Bass	F	С	С	М	49	49.00	9.90	2.40	3.66	48.88
Largemouth Bass	F	С	С		1	1.00	0.20	0.02	0.02	15.00
Green Sunfish	S	1	С	Т	31	31.00	6.26	0.91	1.38	29.22
Bluegill Sunfish	S	1	С	Р	8	8.00	1.62	0.20	0.31	25.38
Longear Sunfish	S	I	С	М	35	35.00	7.07	0.58	0.88	16.43
Blackside Darter	D	1	S		2	2.00	0.40	0.01	0.01	4.00
Logperch	D	1	S	М	13	13.00	2.63	0.06	0.09	4.77
Johnny Darter	D	1	С		1	1.00	0.20	0.00	0.00	2.00
Greenside Darter	D	1	S	М	1	1.00	0.20	0.00	0.00	3.00
	Mile	Total			495	495.00		65.46		
	Numl	ber of S	Specie	es	25					
	Numl	ber of I	Hybrid	s	0					

River Code: 14-001 **Great Miami River** 2009 Stream: Sample Date: Location: dst. Piqua dam River Mile: 114.00 Date Range: 07/07/2009 Drainage: 873.0 sq mi 08/11/2009 Time Fished: 5448 sec Thru: Sampler Type: A Dist Fished: 1.00 km Basin: Great Miami River No of Passes: 2

Species Name / ODNR status		Feed Guild			# of Fish	Relative Number	% by Number	Relative Weight	% by Weight	Ave(gm) Weight
Gizzard Shad		0	М		3	3.00	0.26	0.32	0.24	106.67
Quillback	С	0	М		3	3.00	0.26	1.47	1.12	490.67
Black Redhorse	R	1	S	ı	77	77.00	6.59	17.20	13.06	223.38
Golden Redhorse	R	1	S	М	194	194.00	16.60	46.31	35.17	238.72
Northern Hog Sucker	R	1	S	М	57	57.00	4.88	4.15	3.15	72.83
Spotted Sucker	R	I	S		2	2.00	0.17	0.16	0.12	81.00
Smallmouth Redhorse	R	1	S	М	22	22.00	1.88	4.45	3.38	202.27
Common Carp	G	0	М	Т	8	8.00	0.68	24.55	18.65	3,068.75
River Chub	N	I	Ν	ı	30	30.00	2.57	0.29	0.22	9.80
Suckermouth Minnow	N	1	S		2	2.00	0.17	0.00	0.00	2.00
Silver Shiner	N	- 1	S	I	1	1.00	0.09	0.01	0.01	12.00
Rosyface Shiner	N	- 1	S	I	4	4.00	0.34	0.01	0.01	2.25
Scarlet Shiner	N	- 1	S	M	2	2.00	0.17	0.00	0.00	2.00
Striped Shiner	N	1	S		4	4.00	0.34	0.02	0.01	4.00
Spotfin Shiner	N	1	M		162	162.00	13.86	0.61	0.46	3.73
Sand Shiner	N	1	M	M	18	18.00	1.54	0.03	0.02	1.39
Bluntnose Minnow	N	0	С	Т	184	184.00	15.74	0.41	0.31	2.21
Central Stoneroller	N	Н	Ν		25	25.00	2.14	0.07	0.06	2.96
Channel Catfish	F		С		10	10.00	0.86	7.52	5.71	752.40
Brook Silverside		1	M	M	1	1.00	0.09	0.00	0.00	3.00
Black Crappie	S	1	С		2	2.00	0.17	0.22	0.17	109.50
Rock Bass	S	С	С		50	50.00	4.28	5.28	4.01	105.58
Smallmouth Bass	F	С	С	M	135	135.00	11.55	11.96	9.08	88.58
Largemouth Bass	F	С	С		12	12.00	1.03	0.44	0.33	36.33
Green Sunfish	S	- 1	С	Т	5	5.00	0.43	0.23	0.17	45.20
Bluegill Sunfish	S	- 1	С	Р	19	19.00	1.63	0.69	0.52	36.21
Orangespotted Sunfish	S	- 1	С		4	4.00	0.34	0.03	0.02	8.00
Longear Sunfish	S	- 1	С	M	19	19.00	1.63	0.49	0.37	25.70
Yellow Perch			М		2	2.00	0.17	0.04	0.03	18.50
Blackside Darter	D	- 1	S		3	3.00	0.26	0.01	0.01	3.00
Logperch	D	- 1	S	M	50	50.00	4.28	0.65	0.50	13.04
Greenside Darter	D	- 1	S	M	19	19.00	1.63	0.10	0.08	5.47
Banded Darter	D	1	S	I	27	27.00	2.31	0.05	0.03	1.67
Rainbow Darter	D	1	S	М	7	7.00	0.60	0.02	0.02	3.14
Sauger X Walleye	Е	Р			6	6.00	0.51	3.87	2.94	645.17
	Mile 7	otal			1,169	1,169.00		131.66		
	A I I		O !-		.,	,				

Number of Species 34
Number of Hybrids 1

Appendix Table 3. Invertebrate Community Index (ICI) metrics and scores for sampling locations in the Great Miami River, Piqua area, 2009. Page A8

	Drainage		Nι	umber of			I	Percent:					
River Mile	Area (sq mi)	Total Taxa	Mayfly Taxa	Caddisfly Taxa	Dipteran Taxa	Mayflies	Caddis- flies	Tany- tarsini	Other Dipt/NI	Tolerant Organisms	Qual. EPT	Eco- region	ICI
Great Miai	mi River (1	4-001)											
Year: 200	9												
115.40	867.0	39(6)	9(6)	8(6)	12(4)	13.5(4)	30.0(4)	37.6(6)	18.6(4)	0.0(6)	22(6)	5	52
114.90 A	867.0	26(4)	3(2)	3(4)	8(2)	4.1(2)	0.8(0)	1.6(2)	93.1(0)	8.2(0)	5(0)	5	16
114.90 B	867.0	24(4)	4(2)	4(4)	7(2)	8.9(2)	4.6(0)	0.0(0)	86.5(0)	25.0(0)	5(0)	5	14
114.40 A	868.0	26(4)	4(2)	2(2)	7(2)	0.3(2)	0.1(0)	0.0(0)	99.5(0)	3.5(2)	3(0)	5	14
114.40 B	868.0	19(2)	4(2)	2(2)	3(0)	2.5(2)	2.0(0)	0.0(0)	95.5(0)	3.3(2)	3(0)	5	10
114.00	873.0	30(4)	8(6)	5(4)	10(4)	6.5(2)	33.5(6)	39.0(6)	20.8(4)	3.1(4)	18(6)	5	46

DSW/EAS 2009-11-8	Great Miami River/ Piqua Power Plant 200	November 20, 2009
Appendix Table 4. Macroinve	ertebrate sampling results for the 2009.	Great Miami River, Piqua area,

Collection Date: 09/30/2009 River Code: 14-001 RM: 115.40

Site: Great Miami River

upst. Piqua Power Plant, upst. RR

Taxa				Taxa			
Code	Taxa	Quant/Q	Q ual	Code	Taxa	Quant/Q	ual
01320	Hydra sp	16		78120	Labrundinia maculata		+
01801	Turbellaria	1	+	78655	Procladius (Holotanypus) sp		+
03121	Paludicella articulata		+	78750	Rheopelopia paramaculipennis	197	
03360	Plumatella sp	22	+	79085	Telopelopia okoboji	65	
03451	Urnatella gracilis	1	+	80310	Cardiocladius obscurus	66	+
03600	Oligochaeta		+	80410	Cricotopus (C.) sp		+
04637	Batracobdella phalera		+	80430	Cricotopus (C.) tremulus group	393	
06201	Hyalella azteca		+	81231	Nanocladius (N.) crassicornus or N. (N.)	590	
11119	Plauditus dubius or P. virilis	118	+		"rectinervis"		
11130	Baetis intercalaris	137	+	81250	Nanocladius (N.) minimus	131	+
11620	Paracloeodes minutus		+	81460	Orthocladius (O.) sp		+
12200	Isonychia sp	40	+	82101	Thienemanniella taurocapita	96	
13100	Nixe sp		+	83158	Endochironomus nigricans		+
13400	Stenacron sp	225	+	83300	Glyptotendipes (G.) sp		+
13510	Maccaffertium exiguum	48	+	83820	Microtendipes "caelum" (sensu Simpson &	66	
13540	Maccaffertium mediopunctatum	19	+		Bode, 1980)		
13561	Maccaffertium pulchellum	573	+	84450	Polypedilum (Uresipedilum) flavum	525	+
13570	Maccaffertium terminatum	228	+	84470	Polypedilum (P.) illinoense		+
16700	Tricorythodes sp	229	+	85625	Rheotanytarsus sp	4460	+
17200	Caenis sp		+	85821	Tanytarsus glabrescens group sp 7	65	
18100	Anthopotamus sp		+	93900	Elimia sp	2	+
21300	Hetaerina sp	25	+	95100	Physella sp		+
22001	Coenagrionidae		+	97601	Corbicula fluminea		+
22300	Argia sp		+	99200	Alasmidonta marginata		+
34700	Agnetina capitata complex	1		99280	Lasmigona costata		+
50315	Chimarra obscura		+	99880	Lampsilis cardium		+
51206	Cyrnellus fraternus	32					
51400	Nyctiophylax sp		+	No. Q	Quantitative Taxa: 39 Total 7	Гаха: 68	
51600	Polycentropus sp	32		No. Q	Oualitative Taxa: 54	ICI: 52	
52200	Cheumatopsyche sp	2233	+	_	•	EPT: 22	
52430	Ceratopsyche morosa group	948	+	TAGIIIC	cer of organisms. 12022 Quar	L1 1. 22	
52510	Hydropsyche aerata	268	+				
52590	Hydropsyche venularis	86	+				
52801	Potamyia flava	1					
53400	Protoptila sp		+				
53501	Hydroptilidae	9					
58505	Helicopsyche borealis		+				
59415	Nectopsyche exquisita		+				
59970	Petrophila sp	5	+				
65800	Berosus sp		+				
68075	Psephenus herricki		+				
68901	Macronychus glabratus	2	+				
69400	Stenelmis sp	1	+				
77500	Conchapelopia sp	66					
	-						

Collection Date: 09/30/2009 River Code: 14-001 RM: 114.90 A upst. Piqua Power Plant

	tion Bate. 07/30/2007 River Code.		11111	- 114.70 A	upst. Piqua Power Piant	
Taxa Code	Taxa	Quant/0	Qual	Taxa Code	Taxa	Quant/Qua
01320	Hydra sp	1478	+			
01801	Turbellaria		+			
03360	Plumatella sp	49	+			
03451	Urnatella gracilis	2				
03600	Oligochaeta	608	+			
04666	Helobdella triserialis		+			
05900	Lirceus sp	1	+			
06700	Crangonyx sp		+			
13400	Stenacron sp	330	+			
13521	Stenonema femoratum	3	+			
17200	Caenis sp	167	+			
22001	Coenagrionidae	3	+			
22300	Argia sp	36	+			
51206	Cyrnellus fraternus	32				
51600	Polycentropus sp	34	+			
53800	Hydroptila sp	33	+			
65800	Berosus sp	1	+			
68075	Psephenus herricki		+			
68901	Macronychus glabratus	4				
69400	Stenelmis sp	1	+			
80500	Cricotopus (Isocladius) reversus group	564				
81632	Parakiefferiella n.sp 2	94				
83040	Dicrotendipes neomodestus	470				
83051	Dicrotendipes simpsoni	94				
83158	Endochironomus nigricans	94				
83300	Glyptotendipes (G.) sp	7520	+			
83840	Microtendipes pedellus group		+			
85625	Rheotanytarsus sp	94				
85821	Tanytarsus glabrescens group sp 7	94				
93900	Elimia sp	1	+			
94400	Fossaria sp		+			
95100	Physella sp	295	+			
97601	Corbicula fluminea		+			

No. Quantitative Taxa: 26 Total Taxa: 33

No. Qualitative Taxa: 23 ICI: 16

Number of Organisms: 12102 Qual EPT: 5

Collection Date: 09/30/2009 River Code: 14-001 RM: 114.90 B

Site: Great Miami River upst. Piqua Power Plant

Taxa			Taxa		
Code	Taxa	Quant/Qual	Code	Taxa	Quant/Qua
01320	Hydra sp	339			
01801	Turbellaria	2			
03360	Plumatella sp	24			
03600	Oligochaeta	736			
05900	Lirceus sp	1			
13400	Stenacron sp	331			
13521	Stenonema femoratum	4			
17200	Caenis sp	58			
18100	Anthopotamus sp	7			
22300	Argia sp	4			
51206	Cyrnellus fraternus	155			
51400	Nyctiophylax sp	32			
51600	Polycentropus sp	17			
59415	Nectopsyche exquisita	1			
68901	Macronychus glabratus	1			
74501	Ceratopogonidae	16			
83002	Dicrotendipes modestus	169			
83040	Dicrotendipes neomodestus	24			
83050	Dicrotendipes lucifer	169			
83300	Glyptotendipes (G.) sp	1951			
84000	Parachironomus sp	24			
84040	Parachironomus frequens	48			
93900	Elimia sp	3			
95100	Physella sp	388			
99998	NO QUALITATIVE SAMPLE COLLECTED	+			

No. Quantitative Taxa: 24 Total Taxa: 25 No. Qualitative Taxa: 1 ICI: **14**

Number of Organisms: 4504 Qual EPT:

Collection Date: 09/30/2009 River Code: 14-001 RM: 114.40 A adi, Piqua Power Plant

Conec	ction Date: 09/30/2009 River Co	Juc. 14 001	141/1	: 114.40 A	adj. Piqua Power Plant	
Taxa	TT.	0	2 1	Taxa	TT.	0 1/0
Code	Taxa	Quant/0	Q ual	Code	Taxa	Quant/Qua
00401	Spongillidae		+			
01320	Hydra sp	645				
01801	Turbellaria	16	+			
03360	Plumatella sp	41	+			
03451	Urnatella gracilis	1				
03600	Oligochaeta	192				
06700	Crangonyx sp		+			
08601	Hydrachnidia	16				
13400	Stenacron sp	18	+			
13521	Stenonema femoratum	2	+			
13561	Maccaffertium pulchellum	1				
17200	Caenis sp	19				
22001	Coenagrionidae	2				
22300	Argia sp	1	+			
51206	Cyrnellus fraternus	5				
51600	Polycentropus sp		+			
54200	Orthotrichia sp	8				
65800	Berosus sp	1				
68075	Psephenus herricki		+			
68901	Macronychus glabratus	9				
77750	Hayesomyia senata or Thienemannimyia norena		+			
80411	Cricotopus (Isocladius) sp nr. absurdus	293				
81231	Nanocladius (N.) crassicornus or N. (N.) "rectinervis"	146				
82890	Demeijerea sp	146				
83045	Dicrotendipes nervosus	146				
83050	Dicrotendipes lucifer	293				
83300	Glyptotendipes (G.) sp	11118	+			
83840	Microtendipes pedellus group		+			
84040	Parachironomus frequens	146				
84888	Xenochironomus xenolabis		+			
93200	Hydrobiidae	1	+			
93900	Elimia sp		+			
95100	Physella sp	265	+			
96900	Ferrissia sp	16				

No. Quantitative Taxa: 26 Total Taxa: 34

No. Qualitative Taxa: 16 ICI: 14

Number of Organisms: 13547 Qual EPT: 3

Collection Date: 09/30/2009 River Code: 14-001 RM: 114.40 B

Site: Great Miami River adj. Piqua Power Plant

Taxa Code	Taxa	Quant/Qual	Taxa Code	Taxa	Quant/Qual
01320	Hydra sp	490			
01801	Turbellaria	1			
03360	Plumatella sp	27			
03600	Oligochaeta	96			
05900	Lirceus sp	1			
06700	Crangonyx sp	1			
13400	Stenacron sp	121			
13521	Stenonema femoratum	1			
17200	Caenis sp	73			
18100	Anthopotamus sp	3			
22300	Argia sp	1			
51206	Cyrnellus fraternus	157			
51600	Polycentropus sp	2			
83002	Dicrotendipes modestus	128			
83300	Glyptotendipes (G.) sp	6633			
83840	Microtendipes pedellus group	64			
93900	Elimia sp	13			
95100	Physella sp	122			
96900	Ferrissia sp	45			
99998	NO QUALITATIVE SAMPLE COLLECTED	+			

No. Quantitative Taxa: 19 Total Taxa: 20 No. Qualitative Taxa: 1 ICI: 10

Number of Organisms: 7979 Qual EPT:

Collection Date: 09/30/2009 River Code: 14-001 RM: 114.00 Site: Great Miami River dst. Piqua dam

	tion Date. 07/30/2007 River Cour			_	ast. Piqua dam		
Taxa Code	Taxa	Quant/Qu		Taxa Code	Taxa	Quant/0	Qua
00650	Eunapius sp	4	+	80430	Cricotopus (C.) tremulus group		+
01801	Turbellaria	38 +	+	80500	Cricotopus (Isocladius) reversus gr	roup	+
03040	Fredericella sp	4	+	80510	Cricotopus (Isocladius) sylvestris g	roup	+
03121	Paludicella articulata	-	+	81231	Nanocladius (N.) crassicornus or N	<i>I. (N.)</i> 671	
03360	Plumatella sp	42 +	+		"rectinervis"		
03600	Oligochaeta	64 +	+	81240	Nanocladius (N.) distinctus	447	
06700	Crangonyx sp	+	+	83300	Glyptotendipes (G.) sp	559	+
11119	Plauditus dubius or P. virilis	6 +	+	84000	Parachironomus sp		+
11130	Baetis intercalaris	244	+	84030	Parachironomus directus		+
11670	Procloeon viridoculare	+	+	84039	Parachironomus frequens group	112	
12200	Isonychia sp	8 +	+	84450	Polypedilum (Uresipedilum) flavun	1229	+
13000	Leucrocuta sp	+	+	84470	Polypedilum (P.) illinoense		+
13400	Stenacron sp	187 +	+	85500	Paratanytarsus sp		+
13510	Maccaffertium exiguum	1		85625	Rheotanytarsus sp	6483	+
13561	Maccaffertium pulchellum	519 +	+	87540	Hemerodromia sp	32	
13570	Maccaffertium terminatum	42 +	+	93200	Hydrobiidae		+
16700	Tricorythodes sp	65 -	+	93900	Elimia sp	2	+
17200	Caenis sp	-	+	95100	Physella sp		+
18100	Anthopotamus sp	+	+	95900	Gyraulus sp		+
21300	Hetaerina sp	+	+	96100	Menetus (Micromenetus) sp		+
22001	Coenagrionidae	+	+	97601	Corbicula fluminea		+
22300	Argia sp	+	+	98600	Sphaerium sp	1	+
34700	Agnetina capitata complex	+	+	99200	Alasmidonta marginata		+
43300	Ranatra sp	+	+				
50315	Chimarra obscura	+	+	No. Q	uantitative Taxa: 30	Total Taxa: 66	
52200	Cheumatopsyche sp	3628 -	+	No. Q	ualitative Taxa: 56	ICI: 46	
52430	Ceratopsyche morosa group	1600 +	+	Numb	per of Organisms: 16609	Qual EPT: 18	
52510	Hydropsyche aerata	302 +	+		1000)	Quui 21 1. 10	
52520	Hydropsyche bidens	32					
52801	Potamyia flava	2					
57400	Neophylax sp	-	+				
58505	Helicopsyche borealis	4	+				
59970	Petrophila sp	35					
60400	Gyrinus sp	4	+				
68075	Psephenus herricki	4	+				
68201	Scirtidae	4	+				
68901	Macronychus glabratus	2					
69400	Stenelmis sp	4	+				
74100	Simulium sp	32 +	+				
77750	Hayesomyia senata or Thienemannimyia norena	4	+				
78140	Labrundinia pilosella	-	+				
78750	Rheopelopia paramaculipennis	112					
80310	Cardiocladius obscurus	112 +	+				
80410	Cricotopus (C.) sp	-	+				