EPA
Superfund
Record of Decision:
Big D Campground, OH
The Big D Campground site is in Kingsville, Ashtabula County, Ohio. The site consists of a 1.2-acre landfill created out of a former sand and gravel quarry. From 1964 to 1976 the site owner accepted approximately 28,000 cubic yards of hazardous materials for disposal which included up to 5,000 drums containing solvents, caustics, and oily substances. A 1986 remedial investigation identified the landfill as the primary source of contamination in soil outside the landfill and ground water underlying the landfill. Ground water contamination is of significant concern because it is migrating towards the drinking water supply wells of nearby residences and Conneaut Creek which is adjacent and south of the site. The primary contaminants of concern affecting the soil and ground water are VOCs including PCE and TCE, other organics, and metals including chromium and lead.

The selected remedial action for this site includes removing and incinerating up to 5,000 buried drums, bulk wastes, and up to 30,000 cubic yards of contaminated soil followed by onsite disposal of nonhazardous ash residue; pumping and treatment of 40,000,000 to 60,000,000 gallons of ground water using an onsite granular activated carbon system followed by onsite discharge to Conneaut Creek; and ground water and surface water monitoring. The estimated present worth cost for this remedial action is $39,000,000, which includes annual O&M costs of $320,000.
Record of Decision

DECLARATION

SITE NAME AND LOCATION

Big D Campground
Kingsville, Ohio

STATEMENT OF BASIS AND PURPOSE

This decision document presents the selected remedial action for the Big D Campground site in Kingsville, Ohio, developed in accordance with CERCLA, as amended by SARA, and, to the extent practicable, the National Contingency Plan. This decision is based on the administrative record for this site. The attached index identifies the items that comprise the administrative record upon which the selection of the remedial action is based.

The State of Ohio has concurred on the selected remedy.

ASSESSMENT OF SITE

The site consists of a drum and bulk waste disposal area created in a former sand and gravel quarry. Up to 5,000 drums and 30,000 cubic yards of bulk wastes are believed to be buried at the site. Ground water in contact with these wastes is migrating towards nearby residences to the north and into the Conneaut Creek adjacent to and south of the site. Actual or threatened releases of hazardous substances from this site, if not addressed by implementing the response action selected in this Record of Decision (ROD), may present an imminent and substantial endangerment to public health, welfare, or the environment.

DESCRIPTION OF THE REMEDY

The selected remedy addresses all risks posed by contamination in the source area (landfill) and ground water. The source area will be excavated and incinerated and the ground water will be collected and treated.

The major components of the remedy include:

- Deed restriction
- Site fencing
- Source area excavation
- Incineration on-site
- Disposal of treated material and backfilling on site
- Ground water collection
- Ground water treatment on-site
- Discharge of treated ground water to Conneaut Creek
- Ground water and surface water monitoring
DECLARATION

The selected remedy is protective of human health and the environment, a waiver can be justified for whatever Federal and state applicable or relevant and appropriate requirement that will not be met, and is cost effective. This remedy satisfies the statutory preference for remedies that employ treatment, reduces toxicity, mobility, or volume as a principal element and utilizes permanent solutions and alternative treatment technologies to the maximum extent practicable. Because this remedy will result in hazardous substances remaining on-site, the five-year facility review will apply to this action.

Valdas V. Adamkus
Regional Administrator
U.S. EPA, Region V

Sept. 29, 1989

Date
I. Site Name, Location and Description

The Big D Campground ("Big D") site is located in Kingsville, Ashtabula County, Ohio, approximately 2.5 miles south of Lake Erie and 50 miles northeast of Cleveland. The site is located south of Creek Road, north of Conneaut Creek and west of, and adjacent to, "Big D Kampground" (see Figure 1).

The landfill at the site is approximately 1.2 acres in size and approximately 20 feet deep. The landfill is located on a relatively level surface which gently slopes north towards Lake Erie. Approximately 50 feet south of the southern edge of the landfill the land slopes sharply towards Conneaut Creek (approximate 32% slope).

The site is bordered by Conneaut Creek to the south, a campground to the southeast, open land to the west, residences with small acreage to the north and northwest, and a swamp area approximately 1/2 mile to the north. The residences are located approximately 500 feet north of the site.

Residences within 1/2 mile of the site, north of Conneaut Creek, use ground water for drinking.

II. Site History and Enforcement Activities

The Big D Campground site was initially operated as a sand and gravel quarry which was subsequently filled with hazardous and non-hazardous materials. The active disposal period lasted from 1964-1976.

Most of the materials placed in the landfill were drummed, but some bulk toluene diisocyanate (TDI) was also disposed. It is estimated that 2500 to 5000 drums are buried at the site. The drummed hazardous materials include non-halogenated and halogenated solvents, caustics and oily substances. Other wastes believed to have been disposed of at the site include: spent vacuum pump oil, TDI residue contaminated with monochlorobenzene (MCB) and carbon tetrachloride, earth contaminated with diaminotoluene (TDA) and TDI, flyash, trash, monoethanolamine (MEA), off-specification TDI, and TDA and TDI in sample cans and bottles. The vacuum pump oil may have been contaminated with TDI, MCB and trace levels of phosgene. The total volume of hazardous substances disposed of at the site is approximately 28,000 cubic yards.

Preliminary investigations began at the site in 1982. As early as 1982, the major PRP at the site was sent information on these investigations. In December, 1982 the site was proposed for the National Priorities List (NPL) of Superfund sites. On September 8, 1983, the site became final on the NPL. Olin Chemicals Corporation, a major PRP at the site, made comments on this proposed listing in February of 1983. In April 1985, notice letters were sent to three PRPs: Olin Chemicals Corporation (generator), Brenkus Construction
Olin was sent a CERCLA Section 104(e) information request at approximately the same time, to which they responded in July 1985.

Olin's response indicated that they were a substantial contributor of hazardous substances to the Site and would be the focus of RI/FS negotiations. In November 1985, a reminder that notice had been provided and a draft scope of work for the RI/FS was sent to the potentially responsible parties (PRPs). In December 1985, negotiations to conduct the RI/FS began with Olin, the only PRP to respond positively to EPA's request. In early January 1986, technical questions arose and EPA reiterated that a consent order would need to be agreed upon by February 15, 1986 for Olin to conduct the RI/FS. No agreement was reached and EPA terminated the RI/FS negotiation period shortly after February 15, 1986.

Olin continued to be interested in the remediation process and sent letters protesting the termination of the negotiations. Among these was a counter-proposal to do the RI/FS delivered to the Regional Administrator.

The fund-financed RI began in late 1986 and was completed in mid-1988. The final RI, FS and Proposed Plan were released for public comment on July 28, 1989. A public meeting to discuss these documents was held on August 8, 1989. The public comment period ended on August 26, 1989.

Special Notice for RD/RA negotiations will be issued to PRPs before September 30, 1989.

III. Community Relations History

On August 14-15, 1986 Community Relations personnel from the U.S. EPA and ICF Technologies, Inc. travelled to Cleveland, Ohio and drove to the towns of Mentor, Jefferson and Kingsville, Ohio, where they met with and interviewed County and Township officials and residents.

A Fact Sheet was distributed to the public in December, 1986 which discussed the RI scheduled to begin that month. A RI kickoff public meeting was held on February 5, 1987.

On July 28, 1989 the Final RI report, FS report and Proposed Plan were released to the public for comment. The PRPs were sent a copy of the FS and Proposed Plan on July 27, 1989. A public meeting was held on August 8, 1989, in Kingsville, Ohio, to discuss the RI, FS and Proposed Plan, and to receive official comments on the Proposed Plan. The public comment period ended August 26, 1989. Comments received and responses to comments are addressed in the Responsiveness Summary.

IV. Scope and Role of Response Action

The remedial action will address the principal threats at the site; groundwater contamination and the source area (landfill) contamination. The RI identified total cancer risks as high as 1 x 10^-2 under worst case conditions for ingestion of groundwater. Non-carcinogenic risks were also identified for
ingestion of groundwater, based on worst case conditions.

The major source of contamination identified at the site is the landfill. Therefore the alternative chosen to remediate contamination at the site will address contamination in the ground water and source area. The site risk objectives will reduce health risks in the groundwater and the soils adjacent to the source area (which may pose a risk based on ingestion or direct contact) to a cumulative Hazard Index of 1.0 or less and a cumulative carcinogenic risk of 10^{-6} or less.

V. Summary of Site Characteristics

The RI investigated the contaminant source area (landfill), soils outside the source area, groundwater and surface water and sediment. Table 1 summarizes the maximum concentrations of indicator chemicals (see V. B. Fate and Transport, page 5) identified in different media at the site.

A. Nature and Extent of Contamination

Source Area

A geophysical survey was performed which indicated a rectangular trench in the northern area of the site (approximate size 1.2 acres). Based on the geophysical survey two test pits were excavated. These pits verified the presence of buried drums (intact and either partially crushed or ruptured), bulk waste and contaminated soil in the source area. Analytical results revealed that the same organic compounds found in the ground water and subsurface soil samples are also present in the source area, but at greater concentrations.

Soils (outside the source area)

The geologic investigation identified five geologic units at the site; three glacially deposited units, one alluvial unit and one bedrock unit. At the upper (northern) portion of the site, the three glacial units overlay bedrock. These three units are not present at the lower (southern) portion of the site where bedrock is overlain by alluvial deposits (see Figure 2).

Surface and subsurface soil samples were collected from nine on-site locations surrounding the source area. Inorganic compounds were detected in isolated areas.

Organic compounds were detected in the soils. Chlorobenzene was the organic compound detected most frequently and at the highest concentrations.

Ground Water

Five hydrogeologic units, which correspond to the site geology described above, were identified at the site; three aquifers and two aquitards. The units present at the upper portion of the site are the water table aquifer (uppermost), the silt-clay aquitard, the hard grey clay till aquitard, and the bedrock aquifer. The units present at the lower portion of the site are the
alluvial aquifer and the bedrock aquifer (see Figure 2).

At the upper portion of the site the water table aquifer is hydraulically separated from the bedrock aquifer. At the lower portion of the site the alluvial aquifer and the semi-confined aquifer are hydraulically connected.

Ground water in the water table aquifer at the upper portion of the site flows both north and south. The approximate location of the ground water divide occurs at the southern edge of the landfill. Ground water flows north towards local discharge points and flows south toward Conneaut Creek. The confined bedrock aquifer locally flows south to Conneaut Creek.

Two rounds of ground water sampling were conducted at wells around the source area, wells located south of the source area near the creek and six off-site residential wells. Shallow wells on-site and near the creek showed concentrations of inorganic contaminants above background levels. Deep on-site wells also have concentrations of some inorganic constituents above background levels.

Organic indicator compounds were detected in shallow on-site wells and wells near the creek. The indicator chemicals (see V. B. Fate and Transport, p. 5) detected include chlorobenzene, 1,2- and 1,4-dichlorobenzene, trans-1,2-dichlorobenzene, diaminotoluene, tetrachloroethene, trichloroethene and vinyl chloride. Deep wells on-site detected organic compounds at low concentrations. This indicates the possibility of vertical contaminant migration through the aquitard at localized areas.

Compounds found in creek wells (lower portion of the site) were the same as those found in shallow wells (upper portion of the site) however the concentrations in the creek wells were considerably less.

One of the six residential wells sampled showed concentrations of inorganic contaminants similar to wells on site. This residential well is not used by the owner but was sampled due to its proximity to the site. The source of the inorganic contamination is probably the site. However, the aquifer from which the residential well is drawing water appears to be above and separate from the water table aquifer in which on-site monitoring wells are located. Past fluctuations in the ground water levels of the water table aquifer could have caused inorganic contamination to migrate into the perched aquifer.

Organic compounds were detected in one of six residential wells (the Dreslinski campground well). This well had been chlorinated with Chlorox Bleach shortly before the sampling occurred. This chlorination is probably the source of chloroform (12 ug/l), bromo-dichloromethane (2 ug/l) and dibromochloromethane (2 ug/l) identified in the sample from that well.

Surface Water and Sediment

Inorganic contamination in the surface water was detected in Conneaut Creek. However, the concentrations of manganese, magnesium, sodium and calcium were only slightly elevated above background levels.
Organic analytical results indicate the presence of chlorobenzene in Conneaut Creek. The concentrations are much lower than those detected in the ground water and lower than applicable regulatory standards.

Inorganic and organic contaminants were identified in the sediment near the site. The concentrations noted were only slightly above background levels.

B. Fate and Transport

Thirteen of the twenty-five contaminants identified in the source area, soils, ground water and surface water were identified as indicator chemicals. Indicator chemicals were chosen based on factors such as the number of times a chemical was detected, the maximum concentration, and persistence and toxicity to human health and the environment. The indicator chemicals at Big D Campground are listed below:

<table>
<thead>
<tr>
<th>Inorganics</th>
<th>Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>barium</td>
<td>chlorobenzene</td>
</tr>
<tr>
<td>beryllium</td>
<td>1,2-dichlorobenzene</td>
</tr>
<tr>
<td>chromium</td>
<td>1,4-dichlorobenzene</td>
</tr>
<tr>
<td>lead</td>
<td>trans-1,2-dichloroethene</td>
</tr>
<tr>
<td>nickel</td>
<td>diaminotoluene</td>
</tr>
<tr>
<td></td>
<td>trichloroethene</td>
</tr>
<tr>
<td></td>
<td>tetrachloroethene</td>
</tr>
<tr>
<td></td>
<td>vinyl chloride</td>
</tr>
</tbody>
</table>

Inorganic Contaminants

Inorganic contaminants are present in the source area, surface soils, subsurface soils and ground water. Inorganics in the soils can (1) migrate to Conneaut Creek by runoff from surface soils and move with the Creek, eventually collecting as stream sediment, (2) migrate up from the saturated zone into the unsaturated zone due to fluctuating ground water levels, (3) remain attached to unsaturated subsurface soils, or (4) move with ground water from the source area and subsurface soils.

Inorganics in ground water in the water table aquifer are not expected to migrate to a significant degree, however, part of the source area is in the ground water. Ground water coming in contact with the source area can have contaminant concentrations as high as the solubility limit for specific compounds.

Inorganics present in the alluvial and bedrock aquifers may (1) attach to subsurface soils and not migrate, or (2) discharge to Conneaut Creek and decrease in concentration due to dilution or attaching to creek sediments.

Organic Contaminants

Organics were detected in the source area, surface soils, subsurface soils and ground water. Organics in the source area and soils can (1) migrate to Conneaut Creek by runoff from surface soils and volatilize or accumulate in
stream sediments, and (2) migrate from the source area and soils into ground water by moving vertically via precipitation or fluctuating ground water levels (the bottom of the source area is located in ground water).

The major pathway for organic contaminant movement at the site is by ground water flow. Organics will generally move with the bulk ground water flow and the attachment to soils will be minimal because less than 10 percent silt and clay is present in the sandy water table aquifer; sands do not typically adsorb organics. Organics in the ground water can also diffuse upward from the ground water into the unsaturated zone soils or atmosphere.

Organics in the ground water can discharge into Conneaut Creek where the concentrations of organics will decrease due to dilution, attaching to sediments, sedimentation and aquatic uptake (ingestion). In addition, organic contaminants in the surface water may decrease due to volatilization.

VI. Summary of Site Risks

A. Summary of Exposure Assessment

Six site-specific exposure scenarios were identified:

- Ingestion of contaminated soil
- Direct contact with contaminated soil
- Ingestion of contaminated ground water
- Incidental ingestion of contaminated surface water
- Direct contact with contaminated surface water
- Ingestion of contaminated aquatic life

An exposure scenario based on contaminants in the source area was not evaluated. Limited sampling was conducted in the test pits excavated in the source area. The sampling in the source area was conducted only to get general information on the material in the landfill and to confirm that contaminants identified in the ground water and soils originated in the landfill. Any carcinogenic or non-carcinogenic risks identified through other exposure scenarios also apply to the source area. However the risks in the source area would be greater because the concentration of contaminants in the source area are greater.

Table 2 summarizes the six exposure scenarios identified and the populations associated with each.

B. Toxicity Assessment

This section summarizes significant adverse health effects to humans and the environment posed by the indicator chemicals at the Big D site.

Barium is well absorbed but less toxic than most other metals. Acute doses interfere with the function of all muscle tissue, producing a wide variety of effects. Chronic toxicity, except for lung lesions after inhalation and aquatic toxicity, are not well defined.
Beryllium is very poorly absorbed. It produces irritation at the contact point. Like barium, chronic toxicity, except for lung lesions after inhalation and aquatic toxicity, are poorly defined.

Most chromium toxicity is due to hexavalent chromium. The main effect of overdoses is irritation at the point of contact. Chronic inhalation of hexavalent chromium produces lung tumors. Other target organs are the kidney, blood forming tissues and liver. Chromium is also toxic to aquatic species.

Lead is fairly well absorbed and accumulates in the skeleton. The main toxic effects are on the nervous system. Lead poisoning in children can inhibit growth and produce permanent learning defects. Lead is toxic to fish, however toxicity decreases as water hardness increases.

Nickel is a poorly absorbed metal. The major toxic effects are irritation on contact and allergic sensitization. Inhalation causes respiratory tract tumors.

Chlorobenzene is absorbed after ingestion, absorbed from the lungs and not absorbed through the skin. Acute doses produce irritation and central nervous system depression. Repeated doses cause liver and kidney lesions. Chlorobenzene is moderately toxic to aquatic species.

1,2-dichlorobenzene and its isomer, 1,4-dichlorobenzene, are very similar in their biological effects, however the 1,2-isomer is usually more potent. Dichlorobenzene is well absorbed by all routes. Acute doses cause irritation, some central nervous system depression, blood toxicity and kidney lesions, but the main effect is liver toxicity. Chronic doses produce similar effects. Dichlorobenzene are more toxic to aquatic species than is chlorobenzene.

Few studies have been performed with trans-1,2-dichloroethene. Its main acute toxic effect is central nervous system depression. Repeated doses affect the liver with some lesser effects on other organs.

Trichloroethene is well absorbed after inhalation and ingestion but poorly absorbed through the skin. Acute doses produce central nervous system depression. Repeated doses produce liver, kidney and peripheral nervous system lesions as well as tumors. Trichloroethene is toxic to aquatic species but much less toxic than the metals of concern.

Tetrachloroethene is similar to trichloroethene but less potent as a central nervous system depressant. It produces liver and lung lesions and tumors in animals. Its toxicity to aquatic species is similar to that of trichloroethene.

Vinyl chloride is carcinogenic to humans and animals. Gaseous vinyl chloride is rapidly absorbed in the lungs and aqueous vinyl chloride is well absorbed from the gastrointestinal tract. Acute exposure produces central nervous system depression. Repeated exposure produces hepatotoxicity. A few large doses or several small doses will produce a variety of effects in humans. In animal studies, vinyl chloride produced some fetotoxicity at very large doses but no teratogenesis. It is mutagenic in a number of in vitro and in vivo systems.
Diaminotoluene is well absorbed orally but less so dermally. Acute doses are irritating and discolor skin and hair. Diaminotoluene is a very potent sensitizer and produces blood and liver lesions. Chronic doses produce liver and other tumors.

C. Risk Characteristics

Using information presented in the previous sections, the actual or potential risks to human health or the environment, associated with contaminants at or released from the site, were assessed. The potential risks associated with each exposure scenario are discussed. Risk levels were calculated by using estimated exposure doses and risk factors established by U.S. EPA.

To determine the non-carcinogenic risks, a hazard index (HI) was calculated for each contaminant of concern for which an allowable chronic intake (AIC) has been established by the U.S. EPA. The HI is the ratio between the estimated exposure dose for each contaminant and the acceptable exposure level for that same contaminant. In all cases, the AIC was used to represent each contaminant's acceptable exposure.

Carcinogenic risks were evaluated in terms of upperbound excess lifetime cancer risks to children who ingest site soils from the upper or lower portions of the site under probable case and worst case conditions. These risks were calculated using the following equation:

Upperbound Excess Lifetime Cancer Risk = (Average Lifetime Dose) x (Carcinogenic Potency Factor)

Recent U.S. EPA guidance indicates that the target carcinogenic risks resulting from exposures at a Superfund site may range from between 10^{-4} to 10^{-7}. U.S. EPA Region V has a risk policy that cancer risks of 10^{-6} or greater are generally considered unacceptable. Thus, remedial alternatives being considered should be able to reduce total potential carcinogenic risks to levels of 10^{-6} or less.

Table 3 presents a summary of the potential risks associated with the various scenarios evaluated. Potentially significant risks are defined as those with a Hazard Index of 1.0 or greater or a cancer risk of 10^{-6} or greater.

Risk characterization of ingestion of, and direct contact with, contaminated soils outside the source area did not identify any non-carcinogenic or total cancer risks (see Table 3).

Ingestion of ground water identified total cancer risks as high as 1×10^{-2} under worst case conditions from all three aquifers. The contaminants associated with these risks are 2,4-diaminotoluene, tetrachloroethene, trichloroethene and vinyl chloride. Trichloroethene contamination levels identified in ground water were up to 1500 times in excess of federal standards for drinking water. Non-carcinogenic risks, based on worst case exposure doses, were also identified for all three aquifers. The primary contaminants associated with these risks are chlorobenzene and tetrachloroethene.
Chlorobenzene contamination levels identified in ground water were up to 750 times in excess of federal standards for drinking water.

Risks associated with incidental ingestion of contaminated surface water, direct contact with contaminated surface water and ingestion of contaminated aquatic life were not evaluated. Minimal contamination was found in the surface water and the contamination detected which exceeded federal regulations (lead and beryllium) was only found in one downstream sample. Also, contamination detected in the surface water was only slightly above background values.

The potential risks to the environment were evaluated by focusing on the aquatic life in Conneaut Creek next to and downstream of the site. Data on bottom-dwelling populations collected from Conneaut Creek indicated that the biological community downstream of the site may be slightly impaired, however further extensive studies of the data would be required to confirm this. The water quality data were compared to the U.S. EPA's Ambient Water Quality Criteria and no significant impacts were detected. Therefore, releases of contamination from the site may be only slightly impacting Conneaut Creek at this time.

The proposed alternative to remediate contamination at the site will address contamination in the ground water and the source area. The site risk objectives will reduce health risks in the ground water and soils adjacent to the source area (which may pose a risk based on ingestion or direct contact) to a cumulative Hazard Index of 1.0 or less and a cumulative carcinogenic risk of 10^{-6} or less.

VII. Documentation of Significant Changes

The selected remedy and the preferred alternative presented in the Proposed Plan is alternative number 9 - On-Site Incineration, Ground Water Treatment. There are no significant changes.

VIII. Description of Alternatives

Nine alternatives were evaluated in detail in the Feasibility Study. Alternatives numbers 2 through 5 were not in full compliance with ARARs because ground water treatment was not included. The FS details all nine alternatives. Alternative 1, the no-action alternative, was also not in compliance with ARARs, however it is being retained as a baseline for comparison to other alternatives. Therefore Alternative number 1 and numbers 6 through 9 are summarized below.

A. Alternative 1 - No Action

1. Treatment Components

No treatment will occur.

2. Containment Components
Wastes will not be contained.

3. Institutional Controls

Institutional controls will not be implemented.

4. Estimated Time for Implementation.

None

5. Estimated Capital, O&M, and Present Worth Costs

All costs are $0.

6. ARARs

This alternative does not comply with ARARs.

B. Alternative 6 - Source Area Containment, Treatment of Ground Water Outside the Contained Area.

1. Treatment Components

This alternative would collect ground water in the water table aquifer with two interceptor trenches. Ground water in the alluvial, semi-confined bedrock and confined bedrock aquifers would be collected with extraction wells. The ground water will be treated on-site in a granular activated carbon (GAC) system. However, should pilot testing during the design phase indicate that pretreatment, such as sand filtration, ozonation or air stripping, is needed to achieve necessary removal efficiencies of certain compounds, the system will be adjusted accordingly. The estimated volume of contaminated ground water is 40 to 70 million gallons.

After treatment the effluent will be discharged to Conneaut Creek.

The cleanup levels to meet risk objectives for ground water are based on future use scenario. The ground water treatment will reduce risks posed from ingesting ground water to a cumulative Hazard Index of 1.0 or less and a cumulative cancer risk of 10^{-6} or less.

Interceptor trenches, extraction wells and GAC treatment are easily implemented.

2. Containment Components

This alternative would contain the buried drums, bulk wastes and contaminated soils by placing a multilayer cap over the source area. The cap would reduce infiltration and contaminant migration to the ground water. The cap would cover approximately a 3-acre area (120,000 square feet) and would be a soil-synthetic membrane cap.
This alternative would contain the source area by surrounding the buried drums, bulk wastes and contaminated soils with a slurry wall to prevent horizontal migration of contamination. The slurry wall would be installed three feet into the hard grey clay unit underlying the water table aquifer and the source area. The slurry wall would be approximately 25 feet deep, 3 feet thick and 1,100 feet long.

The wastes in the source area consist of buried drums (approximately 2,500 to 5,000 drums) bulk wastes and contaminated soils (approximately 25,000 to 30,000 cubic yards) contained in an area approximately 1.2 acres on the surface and 20 feet deep. Risks posed by materials in the landfill were not calculated because a representative sample was not able to be obtained. Limited sampling identified that contamination in the landfill was the same as that identified in other media except at greater concentrations (See Table 1).

3. Institutional Controls

A fence will be installed around the perimeter of the capped area to limit access to the site.

Deed restrictions would be placed on the land which would be capped to prevent future excavation or construction activities. Deed restrictions would be placed on property overlying the contaminant plume and source area to prohibit installation or use of drinking water wells in the three aquifers identified at the site.

Long-term operation and maintenance would exist to maintain the cap. Annual cap inspections and vegetation mowing will reduce the likelihood of cap failure. Long term cap maintenance would be required to correct settlement, erosion and other problems. The cap may need to be replaced after 30 years to prevent infiltration and contaminant migration.

Residual risk would remain from the drums, bulk wastes and contaminated soils in the source area since they will not be removed or treated. Long term ground water monitoring in the water table aquifer will be necessary to identify if the slurry wall fails. The expected life of a slurry wall is 30 years.

4. Estimated Time for Implementation

The slurry wall and cap construction should take 1 to 1.5 years, which includes testing, design, bidding, and construction. The ground water collection and treatment system will take 6 to 12 months, which includes testing, design, bidding, and construction. The total estimated time for completion is 1.5 to 2.5 years. A ground water collection time of 20 to 60 years would be required to reach risk objectives for ground water in all three aquifers. This estimate is based upon the amount of time necessary to remove contaminants from the saturated portion of the aquifer immediately below the source area and all contamination which has already migrated from the source area.
5. Costs

Estimated capital costs: $5,000,000
Estimated present worth: $8,000,000
Estimated annual O&M costs: $360,000

6. ARARs

Ground water treatment must comply with chemical specific ARARs for barium (MCL = 1,000 ug/L), chromium (MCL = 50 ug/L), 1,4-dichlorobenzene (MCL = 75 ug/L), trichloroethene (MCL = 5 ug/L), and vinyl chloride (MCL = 2 ug/L).

Action specific ARARs are listed on Table 4.

C. Alternative 7 - On-Site Incineration, Vitrification, Ground Water Treatment

1. Treatment Components

This alternative would remove buried drums from the source area (approximately 2,500 to 5,000 drums) and incinerate the drums on-site. Contaminated soils will remain in the source area. Ash remaining after incineration, approximately 500 cubic yards, will be placed back in the source area. The ash and soils will be stabilized by in-situ vitrification. A soil contamination study will be conducted prior to vitrification to identify the extent of contamination. An estimated 25,000 to 30,000 cubic yards of soil and ash will need to be vitrified. After vitrification, the area would be backfilled to original grade with clean native soil.

Ground water in the water table aquifer would be collected with two interceptor trenches. Ground water in the alluvial, semi-confined bedrock and confined bedrock aquifers will be collected with extraction wells. The collected ground water will be treated on-site in a granular activated carbon system. If necessary, additional pretreatment of ground water will be implemented, see alternative 6. The estimated volume of contaminated ground water is 40 to 70 million gallons.

After treatment the effluent will be discharged to Conneaut Creek.

The cleanup levels to meet risk objectives for the ground water are based on a future use scenario. The ground water treatment will reduce risks posed from ingesting ground water to a cumulative Hazard Index of 1.0 or less and a cumulative cancer risk of 10^{-6} or less.

Vitrification technology is still developmental and very few contractors are available to implement the technology.

Incineration, interceptor trenches, extraction wells and GAC treatment are easily implemented.
2. Containment Components.

This alternative does not include any containment components.

3. Institutional Controls.

The site will be fenced to limit access and to contain the source area (excavation area), drum staging area, on-site incinerator, and the ground water treatment system.

Deed restrictions will be placed on property overlying the source area and contaminant plume to prohibit installation or use of drinking water wells in the three aquifers identified at the site.

After incineration of drums and vitrification of soils, no long term monitoring or O&M would be required at the source area.

Once ground water risk objectives are met long term monitoring will not be necessary because the source area is stabilized.

4. Estimated Time for Implementation.

Drum removal, incineration and vitrification are expected to take 2 to 2.5 years which includes design, bid, mobilization, test burn, vitrification, demobilization, and backfill activities.

The preparation activities for ground water collection, treatment, and discharge would take 1.5 to 2.5 years for testing, design, bidding, and construction activities and would be concurrent with the source area remediation. 20 to 60 years is the estimated time to collect and treat all ground water to meet risk objectives (see alternative 6).

5. Costs

Estimated capital costs	$36,000,000
Estimated present worth	$39,000,000
Estimated annual O&M costs	$350,000

6. ARARs

Chemical specific ARARs are the same as those for alternative 6.

Action specific ARARs are listed in Table 4.

D. Alternative 8 - Off-Site Incineration, Ground Water Treatment

1. Treatment Components

This alternative would remove buried drums (approximately 2,500 to 5,000 drums), bulk wastes and contaminated soils (approximately 25,000 to 30,000 cubic yards) from the source area. The removed materials will be
transported off-site to a RCRA permitted commercial incinerator. Drums, bulk wastes and contaminated soils will be removed until the bottom of the landfill or the water table is encountered. However, if drums or bulk wastes are located within the saturated zone, they will be removed. The water table is located approximately 17 feet below ground surface and the depth of the landfill is approximately 20 feet. After drums, bulk wastes and contaminated soils are removed, the excavated area will be sampled around the edges from the ground surface to 8 feet below the surface. The sampling will determine if soils, which may pose an exposure risk from ingestion or direct contact, have been removed. If necessary, more soils will be removed until the exposure risk is eliminated.

The excavated area will be backfilled with materials similar to native soils and graded and seeded.

Ground water in the water table aquifer will be collected with two interceptor trenches. Ground water in the alluvial, semi-confined bedrock and confined bedrock aquifers will be collected with extraction wells. The collected ground water will be treated on-site in a granular activated carbon system. If necessary, additional pretreatment of ground water will be implemented, see alternative 6. The estimated volume of contaminated ground water is 40 to 70 million gallons.

After treatment the effluent will be discharged to Conneaut Creek.

The cleanup levels to meet risk objectives for the ground water are the same as in alternative 7.

Excavation, backfilling, interceptor trenches, extraction wells and GAC treatment are easily implemented.

2. Containment components

This alternative does not include any containment components.

3. Institutional Controls

Access to the site will be controlled by installing a fence. The fence will surround the source area, the drum staging area to prepare materials for shipment, and the ground water treatment system.

Deed restrictions will be placed on property overlying the source area and contaminant plume to prohibit installation or use of drinking water wells in the three aquifers identified at the site.

After removal and transport of buried drums, bulk wastes and contaminated soils, no long term monitoring of the landfill will be necessary.

Once ground water risk objectives are met, long term monitoring will not be necessary because the source of contamination has been removed.
4. Estimated time for Implementation

Excavation and transport are expected to take 2.5 to 3 years, which includes design, bid, removing drums, bulk wastes and contaminated soils, transport to an incinerator and backfilling the excavated area.

Preparation activities for ground water collection, treatment and discharge would take 1.5 to 2.5 years for testing, design, bidding and construction activities. These activities would be concurrent with source area remediation. 20 to 60 years would be required to collect and treat all ground water to risk objectives (see alternative 6).

5. Costs

Estimated capital costs: $63,000,000
Estimated present worth: $67,000,000
Estimated annual O&M costs: $420,000

6. ARARs

Chemical specific ARARs are the same as those for alternative 6.

Action specific ARARs are listed on Table 4.

E. Alternative 9 - On-Site Incineration. Ground Water Treatment

1. Treatment Components

This alternative will remove all buried drums (approximately 2,500 to 5,000 drums), bulk wastes and contaminated soils (approximately 25,000 to 30,000 cubic yards) from the source area. The removed materials will be incinerated on-site. All drums, bulk wastes and visibly contaminated soils will be removed until the bottom of the landfill or the water table is encountered. However, if drums or bulk wastes are located within the saturated zone, they will be removed. The water table is located approximately 17 feet below ground surface and the depth of the landfill is approximately 20 feet. After drums, bulk wastes and visibly contaminated soils are removed, the excavated area will be sampled around the edges from the ground surface to 8 feet below the surface. The sampling will determine if soils, which may pose an exposure risk from ingestion or direct contact, have been removed. If necessary, more soils will be removed until the exposure risk is eliminated.

The materials remaining after incineration will be placed back into the excavated area. It will be confirmed during test burns, prior to start up of the incinerator, that the ash is able to be delisted. The area will be backfilled with materials similar to native soils to bring it back to original grade.

Ground water in the water table aquifer will be collected with two interceptor trenches. Ground water in the alluvial, semi-confined bedrock
and confined bedrock aquifers will be collected with extraction wells. The collected ground water will be treated on-site in a granular activated carbon system. If necessary, additional pretreatment of ground water will be implemented, see alternative 6. The estimated volume of contaminated ground water is 40 to 70 million gallons.

After treatment, the effluent will be discharged to Conneaut Creek.

The cleanup levels to meet risk objectives for the ground water are the same as those for alternative 7.

Excavation, backfilling, interceptor trenches, extraction wells and GAC treatment are easily implemented.

The implementability of the on-site incinerator is affected by the ability to meet state and local regulations applicable to this technology. Excavated material sampling, test burns and ash analyses will be required prior to initiating the incineration activities. The incineration system must meet performance requirements and air emission discharge requirements. The implementability of the alternative also depends on the incinerator ash being able to be delisted.

2. Containment Components.

This alternative does not include containment components.

3. Institutional Controls.

Access to the site will be controlled by a fence which will surround the source area, drum staging area, on-site incinerator and the ground water treatment system.

Deed restrictions will be placed on property overlying the source area and contaminant plume to prohibit installation or use of drinking water wells in the three aquifers identified at the site.

No long term monitoring of materials in the excavated area will be necessary.

Once ground water risk objectives are met, long term monitoring will not be necessary.

4. Estimated time for Implementation

Source area remediation, including design, bidding, mobilization, test burning, incineration set up, treatment, demobilization and backfilling activities are estimated to take 2 to 2.5 years.

Preparation activities for ground water collection, treatment, and discharge will take 1.5 to 2.5 years for testing, design, bedding, and construction activities. These activities will be concurrent with source area remediation. 20 to 60 years will be required to collect and treat
all ground water to meet risk objectives (see alternative 6).

5. Costs

Estimated Capital Costs: $36,000,000
Estimated Present Worth: $39,000,000
Estimated Annual O&M Cost: $320,000

6. ARARs

Chemical specific ARARs are the same as those identified for Alternative 6.

Action specific ARARs are listed on Table 4.

IX. Summary of the Comparative Analysis of Alternatives

Alternatives 8 and 9 are the most protective of human health and the environment. The source area drums, bulk wastes and contaminated soils are incinerated and the ground water is collected and treated until ground water risk objectives are met.

Alternative 7 protects the human health and the environment in the same manner as Alternatives 8 and 9, except that long term protection of vitrification is not certain.

Alternative 6 protects human health and the environment by containing the source area and treating the ground water however, the risk of contamination breaching the containment system will remain.

Alternative 1 is not protective of human health and the environment.

B. Compliance With ARARs

Alternatives 6, 7, 8 and 9 comply with ARARs.

Alternative 1 does not comply with ARARs.

C. Long-Term Effectiveness and Permanence.

Long-term risks are eliminated for alternatives 8 and 9 because the source of contamination (the source area) is removed and incinerated and ground water will be collected and treated until it meets risk objectives.

Alternative 7 provides long term effectiveness and permanence by incinerating the drums and vitrifying the ash and contaminated soils in the excavated area, however the long-term effectiveness of vitrification is not known. This alternative also collects and treats ground water as in alternative 8 and 9.
Alternative 6 reduces risks by containing the source area and collecting and treating ground water. However, the source of contamination (the landfill) remains, presenting a possible future risk that contamination will breach the containment system.

Alternative 1 does not provide long term effectiveness because the risks are not removed.

D. Reduction of Toxicity, Mobility and Volume

Alternatives 7, 8 and 9 reduce toxicity, mobility, and volume of the source area and ground water contamination.

Alternative 6 reduces mobility of the source area by containing it and reduces toxicity, mobility and volume of ground water contamination by collecting and treating ground water.

Alternative 1 does not reduce toxicity, mobility or volume of contamination.

E. Short-Term Effectiveness

Alternatives 7 and 9 present a high risk to human health and the environment during incineration but this can be reduced by the application of engineering controls. Implementation of both alternatives will take approximately 2 to 2.5 years. These alternatives meet risk objectives.

Alternative 8 presents a moderate risk during incineration because incineration will be done off-site. Implementation will take 2.5 to 3 years. This alternative meets risk objectives.

Alternative 6 presents minimal risks to the human health and the environment. Implementation will take 1.5 to 2.5 years. This alternative meets risk objectives however the source area will remain, presenting a future risk.

Alternative 1 does not present any risks to the public because no remediation will occur. Risk objectives will not be met.

F. Implementability

Alternatives 6 and 9 are easily implemented and the technologies are proven.

Alternative 8 may present an implementation problem because only one RCRA-permitted incinerator is currently located near the site.

Few contractors are available to implement vitrification for alternative 7.

Alternative 1 does not involve any technologies which will be implemented.
G. Cost

<table>
<thead>
<tr>
<th></th>
<th>Estimated Capital Costs</th>
<th>Estimated Present Worth Costs</th>
<th>Estimated Annual O&M Costs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alt. 1</td>
<td>$ 0</td>
<td>$ 0</td>
<td>$ 0</td>
</tr>
<tr>
<td>Alt. 6</td>
<td>$ 5,000,000</td>
<td>$ 8,000,000</td>
<td>$ 360,000</td>
</tr>
<tr>
<td>Alt. 7</td>
<td>$36,000,000</td>
<td>$39,000,000</td>
<td>$ 350,000</td>
</tr>
<tr>
<td>Alt. 8</td>
<td>$63,000,000</td>
<td>$67,000,000</td>
<td>$ 420,000</td>
</tr>
<tr>
<td>Alt. 9</td>
<td>$36,000,000</td>
<td>$39,000,000</td>
<td>$ 320,000</td>
</tr>
</tbody>
</table>

H. State

The Ohio EPA concurs with the U.S. EPA's chosen alternative to remediate contamination at the site.

I. Community Acceptance

A public meeting was held in Kingsville, Ohio on August 8, 1989. During the meeting the community expressed general acceptance of the proposed remedial alternative. Specific concerns included additional monitoring of residential wells, community safety during excavation and incineration and the exact location of ground water collection trenches north of the site.

Response to comments submitted by the public during the public comment period are presented in the Responsiveness Summary Section.

X. The Selected Remedy

The selected remedy to address contamination at the site is alternative 9 which involves excavation of buried drums, bulk wastes and contaminated soils in the source area (see Figure 3). All drums, bulk wastes and visibly contaminated soils will be removed until the bottom of the landfill or the water table is encountered. However, if drums or bulk wastes are located within the saturated zone, they will be removed. The water table is located approximately 17 feet below ground surface and the depth of the landfill is approximately 20 feet. After all drums, bulk wastes and visibly contaminated soils are removed, the excavated area will be sampled around the edges from the ground surface to 8 feet below the surface. The sampling will determine if soils, which may pose an exposure risk from ingestion or direct contact, have been removed. If necessary, more soils will be removed until the exposure risk is eliminated.

The non-combustible material and ash remaining after incineration will be used as backfill material in the excavated area as long as the ash is able to be delisted. Backfill similar to existing strata will be put in the excavated area. The top two feet of backfill will be soil which will be graded and seeded so to allow infiltration of precipitation and aid movement of any
remaining contaminants out of the native soils to the ground water collection/treatment system.

The ground water collection system will collect ground water in the water table aquifer with two interceptor trenches; one at the downgradient edge of the plume and one at the north end of the source area, see Figure 4. The exact placement of the trenches will be decided after completion of a pre-design ground water study. This study will involve confirming what was presented in the RI, south of the site, and installing and sampling additional monitoring wells which will better define the geology north of the site and will determine how far contamination has migrated from the site.

The study will initially concentrate on the area north of the site where the plume may have migrated. This area will be determined based on ground water modelling and results from the last round of ground water sampling during the RI. If ground water contamination has not migrated to this theoretical point, additional wells will be installed closer to the source area until the boundary of the plume is identified. Conversely, if contamination has migrated beyond the theoretical limit, additional wells farther from the source area will be installed in order to place bounds on the location of the plume. The full extent of migration will be established prior to designing the ground water collection and treatment system.

Ground water in the alluvial and semi-confined bedrock and confined bedrock aquifers will be collected with 30 extraction wells. During the pre-design ground water study, the bedrock units will be sampled and the hydrogeology of those units will be confirmed. The collected ground water will be treated with granular activated carbon on-site and discharged to Conneaut Creek. If it is determined, during a pilot field test or a bench scale test that additional pretreatment, such as sand filtration, ozonation or air stripping, is necessary to achieve removal efficiencies of certain compounds, the system will be adjusted accordingly.

Ground water monitoring wells will be installed north of each interceptor trench to monitor for any contamination bypassing the trenches. The existing shallow and deep wells on the lower portion of the site will monitor for any contaminant migration bypassing the extraction wells. A collection time of 20 to 60 years will be required to reach ground water cleanup levels in the water table aquifer. This estimate is based upon the amount of time necessary to remove contaminants from the saturated portion of the aquifer immediately below the source area and all contamination which has already migrated from the source area. If contaminant concentrations change over time, the sampling program may be modified. Cleanup levels for the alluvial/bedrock aquifer should be met within 3 years.

Surface water monitoring will be implemented at 3 locations in Conneaut Creek (one upstream, one downstream, and one adjacent to the site).

The site risk objectives, which alternative 9 will meet, will reduce risks posed by contamination in the ground water to a cumulative Hazard Index of 1.0 or less and a cumulative carcinogenic risk of 10^{-6} or less.
XI. Statutory Determinations

A. Protection of Human Health and the Environment

The selected remedy will eliminate risks posed by contamination in the source area. These risks will be eliminated by incinerating the contents of the landfill. Risks posed by ingestion of ground water at the site will be eliminated by a ground water collection and treatment system.

Short-term risks to the community could be introduced by inhalation of air emissions from excavation or on-site incineration, or by direct contact with excavated material or contaminated surface water run off. Air emissions will be monitored and would be reduced by air pollution control systems when necessary. Risks from direct contact would be reduced by controlling site access. Surface water runoff controls would reduce the potential for contaminant migration from staged materials.

Workers would be in Level B protection during excavation activities. Protection against dermal contact and inhalation would be provided during staging, sampling, and loading activities as required. Air monitoring would assist in determining which activities require worker protection and the level of protection required.

B. Attainment of ARARs

The selected remedy is expected to attain all ARARs. The one problem which may arise is if the incinerator ash is not able to be delisted and backfilled in the excavated area. If the ash is not delistable, it will have to be handled as a hazardous waste. The selected remedy assumes that the characterization of the ash will allow the State of Ohio to waive their solid waste regulation regarding the final deposition of the ash. The State of Ohio has agreed to consider such a waiver when analysis of the ash is available.

The following chemical specific ARARs will be met by the selected remedy:

- Barium
 - MCL = 1,000 ug/L
- Chromium
 - MCL = 50 ug/L
- 1,4-Dichlorobenzene
 - MCL = 75 ug/L
- Trichloroethene
 - MCL = 5 ug/L
- Vinyl Chloride
 - MCL = 2 ug/L

The remedial action risk objectives for the site are based on reducing health risks posed by contamination in the ground water to a cumulative Hazard Index of 1.0 or less and a cumulative carcinogenic risk of 10^{-6} or less.

Table 5 presents the individual concentrations of indicator chemicals which will be used in computing the cumulative risks for ground water and the upper 8 feet of the source area soil.

The Agency has not identified location specific ARARs.

Action specific ARARs which apply to the selected remedy are listed on Table 4.
C. Cost Effectiveness

The selected remedy is cost effective. It is protective of human health and the environment, attains ARARs and provides long-term protectiveness. The long-term protectiveness is achieved by excavation and incineration of the source area and treatment of contaminated ground water. The selected remedy is less costly than alternative 8 while providing equal protectiveness. Alternative 1 is less expensive than the selected remedy however alternative 1 does not provide overall protection of human health and the environment and does not attain ARARs. Alternative 6 is less expensive than the selected remedy however this alternative does not provide long-term protectiveness of human health and the environment. In alternative 6 the source of contamination is not removed but contained, which presents a possible future risk of a breach of the containment structure. Alternative 7 is the same cost as the selected remedy however the selected remedy is easier to implement.

D. Utilization of Permanent Solutions, and Alternative Treatment Technologies of Resource Recovery Technologies to the Maximum Extent Practicable.

The selected remedy was determined to be the most appropriate solution to remediate the contamination at the site. The selected remedy is protective of human health and the environment and eliminates long-term risks by removing and incinerating the source area contamination. Alternative 8 is also equally protective and eliminates risks but the selected remedy is more cost effective. The selected remedy poses risks to the public and workers during implementation of the source area excavation and incineration (2 to 2.5 years duration) however, once this is completed the risks from the source area are eliminated, the toxicity, mobility and volume of the source area are eliminated and the protection of human health and the environment are maximum because the future risks of contamination from the source area is eliminated (compare to Alternative 6).

Ground water collection and treatment will eliminate risks posed to the public within 20 to 60 years, eliminate toxicity, mobility and volume of contamination in the ground water and will maximize protection of the human health and the environment. If the source area is not removed (see alternative 6), ground water cleanup will take an infinite amount of time if a breach of the containment structure occurs. The estimated time to collect and treat ground water, 20 to 60 years, is based upon the amount of time necessary to remove contaminants from the saturated portion of the aquifer immediately below the source area and all contamination which has already migrated from the source area.

Once ground risk objectives are met, long term monitoring will not be necessary.

Source area and ground water remediation are easily implemented and proven technologies (compare to alternative 7).

The selected remedy complies with ARARs.
E. Preference for Treatment as a Principal Element

The selected remedy uses treatment as a principal element to remediate risks posed by ground water contamination and source area contamination.

Treatment of the source area will involve excavating buried drums, bulk wastes and contaminated soils followed by incineration of these materials on-site.

Treatment of the ground water contamination will involve collecting ground water from the three aquifers identified on-site and treating ground water with granular activated carbon.
<table>
<thead>
<tr>
<th>Inorganics</th>
<th>Source Area</th>
<th>Soils (mg/kg)</th>
<th>Ground Water (ug/L)</th>
<th>Surface Water (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>barium</td>
<td>154</td>
<td>204</td>
<td>3,813</td>
<td>76</td>
</tr>
<tr>
<td>beryllium</td>
<td>-</td>
<td>1.5</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>chromium</td>
<td>21.7</td>
<td>28</td>
<td>132</td>
<td>18</td>
</tr>
<tr>
<td>lead</td>
<td>136</td>
<td>25</td>
<td>146</td>
<td>21</td>
</tr>
<tr>
<td>nickel</td>
<td>34</td>
<td>45</td>
<td>134</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organics</th>
<th>Source Area (ug/kg)</th>
<th>Soils (ug/kg)</th>
<th>Ground Water (ug/L)</th>
<th>Surface Water (ug/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>chlorobenzene</td>
<td>12,000,000</td>
<td>59,000</td>
<td>75,000</td>
<td>22</td>
</tr>
<tr>
<td>1,2-dichlorobenzene</td>
<td>7,500</td>
<td>9,300</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>1,4-dichlorobenzene</td>
<td>16,000</td>
<td>4,300</td>
<td>430</td>
<td>-</td>
</tr>
<tr>
<td>trans-1,2-dichloroethene</td>
<td>-</td>
<td>21</td>
<td>14,000</td>
<td>-</td>
</tr>
<tr>
<td>diaminotoluene</td>
<td>-</td>
<td>-</td>
<td>70</td>
<td>-</td>
</tr>
<tr>
<td>trichloroethene</td>
<td>3,300</td>
<td>46</td>
<td>7,500</td>
<td>-</td>
</tr>
<tr>
<td>tetrachloroethene</td>
<td>63,000,000</td>
<td>3,624</td>
<td>2,300</td>
<td>-</td>
</tr>
<tr>
<td>vinyl chloride</td>
<td>180,000</td>
<td>41</td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td>Exposure Pathway</td>
<td>Exposed Population</td>
<td>Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Contact with Surface Water</td>
<td>Children and adults 1 to 70 years of age involved in recreational activities such as hunting, fishing, swimming, or boating along or in Conneaut Creek adjacent to or downgradient of the Big D site.</td>
<td>The human population most likely to be exposed are guests at Big D and Locust Lane Campgrounds, as well as persons living along Creek Road, South Ridge Road, and Reed Road near the site.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incidental Ingestion of Surface Water</td>
<td>Same as for direct contact with surface water above.</td>
<td>Same as for direct contact with surface water above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion of Aquatic Life</td>
<td>Children and adults 1 to 70 years of age ingesting fish and other aquatic animals caught from portions of Conneaut Creek adjacent to or downgradient of the Big D site.</td>
<td>The human population most likely to be exposed are guests at Big D and Locust Lane Campgrounds, persons living along Creek Road, South Ridge Road, and Reed Road near the site, as well as residents of the City of Kingsville.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Future Use -- Construction of Houses or Other Buildings On-site

| Ingestion of Soils | Children 2 to 6 years of age either living on-site or visiting the site. | The human population most likely to be exposed include: children vacationing at either Big D or Locust Lane Campgrounds; those children living along Creek Road, South Ridge Road, and Reed Road; as well as any children living in residences constructed on-site while other buildings are being constructed on-site. Exposure is expected to occur approximately 96 days/year under probable case conditions and 160 days/year under worst case conditions. |
TABLE 2

EXPOSURE PATHWAYS AND EXPOSED POPULATIONS
(UNDER TWO SITE USE SCENARIOS)
EVALUATED IN THE ENDANGERMENT ASSESSMENT FOR
THE BIG D SITE
(Page 2 of 2)

<table>
<thead>
<tr>
<th>Exposure Pathway</th>
<th>Exposed Population</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Future Use — Construction of Houses or Other Buildings On-site</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct Contact with Soils</td>
<td>Same as for ingestion of soils above.</td>
<td>Same as for ingestion of soils above.</td>
</tr>
<tr>
<td>Ingestion of Ground Water</td>
<td>Children and adults 1 to 70 years of age ingesting ground water from water supply wells near and downgradient of the site.</td>
<td>At the upper portion of the site, ground water exists in two hydraulically unconnected aquifers: the water table aquifer and the bedrock aquifer. The human population most likely to be exposed are those persons along Creek Road who use private wells screened in the water table aquifer. At the lower portion of the site, ground water exists in two hydraulically connected aquifers: the alluvial overbank aquifer; and the bedrock aquifer; with recharge from the water table aquifer. No drinking water wells completed in these aquifers were identified downgradient of the site.</td>
</tr>
</tbody>
</table>

Additional Pathways: These include the same pathways described above under Present Use with the following addition. The exposed populations for these pathways under future use conditions will include persons living in any residences constructed on-site.

Note:

See the text for more information concerning exposed populations and assumptions used in exposure calculations.
Table 3
Summary of Potential Risks Associated With the Big D Campground

<table>
<thead>
<tr>
<th>Exposure Scenario</th>
<th>Probable Case</th>
<th>Worst Case</th>
<th>Worst Case Child</th>
<th>Worst Case Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cancer Risks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingestion of Contaminated Soil</td>
<td>1x10^-10</td>
<td>>1</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>Upper Portion of Site</td>
<td>-3</td>
<td>2x10^-9</td>
<td>>1</td>
<td>>1</td>
</tr>
<tr>
<td>Lower Portion of Site</td>
<td>-</td>
<td>5x10^-11</td>
<td>>1</td>
<td>>1</td>
</tr>
<tr>
<td>Direct Contact with Contaminated Soils</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Portion of Site</td>
<td>3x10^-12</td>
<td>>1</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>Lower Portion of Site</td>
<td>5x10^-11</td>
<td>>1</td>
<td>>1</td>
<td></td>
</tr>
<tr>
<td>Ingestion of Ground Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper Portion of Site Water Table Aquifer</td>
<td>6x10^-6</td>
<td>1x10^-2</td>
<td>290</td>
<td>82</td>
</tr>
<tr>
<td>Bedrock Aquifer</td>
<td>-</td>
<td>4x10^-5</td>
<td>5.4</td>
<td>1.6</td>
</tr>
<tr>
<td>Lower Portion of Site Alluvial Overbank</td>
<td>-</td>
<td>6x10^-3</td>
<td>24</td>
<td>6.6</td>
</tr>
<tr>
<td>and Bedrock Aquifer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Total Cancer Risk = Average Lifetime Dose x Carcinogenic Potency Factor
2. Noncarcinogenic Hazard Index = Exposure Dose ÷ Acceptable Chronic Intake
3. Not Available or Not Calculated
Table 4
Action Specific ARAR's

<table>
<thead>
<tr>
<th>Law, Regulation, or Standard</th>
<th>Source of Regulation</th>
<th>Description</th>
<th>Type of ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEDERAL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazardous Waste Management</td>
<td>CFR 260, et.seq.</td>
<td>RCRA regulates the generation, transport, storage, treatment, and disposal of hazardous wastes. CERCLA (Section 104 (c)(3)(B) specifically requires that hazardous substances generated from remedial actions be disposed of at facilities in compliance with Subtitle C of RCRA.</td>
<td>A</td>
</tr>
<tr>
<td>System: General</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Conservation and</td>
<td>RCRA Subtitle C</td>
<td>Section 262 establishes standards for generators of hazardous wastes. This section requires that generators comply with the requirements for identification, accumulation, recordkeeping, and reporting.</td>
<td>A</td>
</tr>
<tr>
<td>Recovery Act (RCRA) standards applicable to hazardous waste</td>
<td>Section 3002, 40</td>
<td>CFR 262</td>
<td></td>
</tr>
<tr>
<td>RCRA standards for owners and operators of hazardous waste treatment, storage, and disposal facilities.</td>
<td>RCRA Subtitle C</td>
<td>Section 3004, 40</td>
<td>These regulations establish minimum standards that define the acceptable management of hazardous wastes. These include the design and operation, monitoring, recordkeeping, closure, and post-closure requirements for hazardous waste management facilities.</td>
</tr>
<tr>
<td></td>
<td>CFR 264 and 265, and Federal Law 71:3101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Land Disposal Restrictions</td>
<td>RCRA Subtitle C</td>
<td>Section 3004, 40</td>
<td>These regulations identify wastes that are from land disposal and establish treatment requirements necessary before these wastes can be land disposed.</td>
</tr>
<tr>
<td></td>
<td>CFR 268</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A = Applicable
R&A = Relevant and Appropriate
<table>
<thead>
<tr>
<th>Law, Regulation, or Standard</th>
<th>Source of Regulation</th>
<th>Description</th>
<th>Type of ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPA-administered permit programs: The Hazardous Waste Permit Program</td>
<td>RCRA Subtitle C Section 3005, 40 CFR 270 and 124</td>
<td>These regulations cover the basic EPA permitting, monitoring, and reporting requirements for hazardous waste management facilities.</td>
<td>A</td>
</tr>
<tr>
<td>Standards of Performance for New Stationary Source</td>
<td>Clean Air Act, 40 CFR 60</td>
<td>These regulations establish the general provisions and performance standards for stationary sources of air emissions.</td>
<td>A</td>
</tr>
<tr>
<td>Safe Drinking Water Act</td>
<td>Safe Drinking Water Act, 40 CFR 141 through 143</td>
<td>This Act establishes maximum contaminant levels (MCL) and MCL goals (MCLG) at levels that would result in no known or potential adverse health affects. MCLs are enforceable health goals. In addition, this Act establishes guidelines for secondary drinking water standards.</td>
<td>A</td>
</tr>
<tr>
<td>Clean Water Act</td>
<td>Clean Water Act Section 301-308</td>
<td>This Act establishes non-enforceable guidelines for water quality that, when not exceeded, reasonably protect human health and aquatic life.</td>
<td>A</td>
</tr>
<tr>
<td>National Pollutant Discharge Elimination System (NPDES)</td>
<td>Clean Water Act Section 402, 40 CFR 122, 123, 125, and 136</td>
<td>This regulation sets forth requirements for point source discharge of water into public surface waters.</td>
<td>A</td>
</tr>
<tr>
<td>Occupational Safety and Health Act (OSHA)</td>
<td>29 CFR 1910</td>
<td>This Act establishes guidelines, requirements, and regulations to provide for the health and safety of workers conducting remedial action activities.</td>
<td>A</td>
</tr>
</tbody>
</table>

A = Applicable
R&A = Relevant and Appropriate
<table>
<thead>
<tr>
<th>Law, Regulation, or Standard</th>
<th>Source of Regulation</th>
<th>Description</th>
<th>Type of ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ohio Solid and Hazardous Waste Disposal Law</td>
<td>Ohio Revised Code (ORC) 3734.02(H)</td>
<td>This regulation prohibits excavation and construction activities without authorization from the Ohio Director of Environmental Protection.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Ohio Revised Code 3734.05(C)</td>
<td>This regulation defines criteria and requirements that need to be included in a hazardous waste facility operating permit.</td>
<td>A</td>
</tr>
<tr>
<td>Ohio Solid Waste Disposal Regulations</td>
<td>Ohio Administrative Code (OAC) 3745-27-02</td>
<td>This regulation states that no provision of 3745-27 or 3745-37 shall exempt parties from compliance with any federal regulation or any section of the Ohio Revised Code.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-27-05</td>
<td>This regulation specifies that solid waste in Ohio must be managed by landfilling, incineration, composting, or approved methods not prohibited by OAC 3745-27.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-27-06</td>
<td>This regulation requires that the plans for new solid waste disposal facilities specify the design features for on-site solid waste disposal activities.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-27-07</td>
<td>These regulations require that the operator incinerate waste materials as soon as possible and that incinerator operations comply with chapters 3704 and 6111.</td>
<td>A</td>
</tr>
</tbody>
</table>

A = Applicable
R&A = Relevant and Appropriate
<table>
<thead>
<tr>
<th>Law, Regulation, or Standard</th>
<th>Source of Regulation</th>
<th>Description</th>
<th>Type or ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio Hazardous Waste Management Regulations</td>
<td>OAC 3745-27-08</td>
<td>These regulations establish the general performance requirements for the operation of solid waste disposal facilities.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-27-10</td>
<td>These regulations establish the general performance requirements for the closure of sanitary landfills.</td>
<td>R & A</td>
</tr>
<tr>
<td>Ohio Water Quality Standards</td>
<td>OAC 3745-50 through 3745-69</td>
<td>These regulations closely parallel the federal regulations described in 40 CFR 264 and establish minimum standards for the acceptable management of hazardous wastes.</td>
<td>A</td>
</tr>
<tr>
<td>Ohio Air Pollution Regulations</td>
<td>OAC 3745-01(-03, -04, -05, and -07)</td>
<td>These regulations establish performance standards for the collection of samples and maintenance of existing surface water. They prohibit nuisance discharges and define water use and criteria that should be maintained.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-15-07</td>
<td>This regulation prohibits air pollution nuisance emissions not regulated under 3745-17, 3745-18, 3745-21, or 3745-31. The substantive requirements of these regulations are applicable to alternatives that would produce air emissions.</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>OAC 3745-15-16</td>
<td>This regulation establishes stack height guidelines for point sources of air emissions.</td>
<td>A</td>
</tr>
<tr>
<td>Ohio Particulate Matter Standards</td>
<td>OAC 3745-17(-02,-05,-07, and -09)</td>
<td>These standards specify maximum ambient air particulate levels and establishes emission limits for opacity and capacity.</td>
<td>A</td>
</tr>
</tbody>
</table>

A = Applicable
R&A = Relevant and Appropriate
<table>
<thead>
<tr>
<th>Law, Regulation, or Standard</th>
<th>Source Regulation</th>
<th>Description</th>
<th>Type of ARAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohio Sulfur Dioxide Standards</td>
<td>OAC 3745-18 (-02, -04, and -06)</td>
<td>These establish standards, methods of measurement, and allowable emission rates for sulfur dioxide.</td>
<td>A</td>
</tr>
<tr>
<td>Ohio Regulations for Carbon Monoxide, Photochemically Reactive Materials, Hydrocarbons, and related materials</td>
<td>OAC 3745-21 (-02, -03, and -05)</td>
<td>These regulations set ambient air quality standards, establish acceptable methods for the measurement of ambient air quality, and prohibit the degradation of ambient air quality set in 3745-21-02.</td>
<td>A</td>
</tr>
<tr>
<td>Ohio Regulations for Carbon Monoxide, Photochemically Reactive Materials, Hydrocarbons, and related materials</td>
<td>OAC 3745-21-07</td>
<td>These regulations establish rules to control the emission of organic materials from new stationary sources.</td>
<td>A</td>
</tr>
</tbody>
</table>

A = Applicable
R&A = Relevant and Appropriate
Table 5

CLEANUP LEVELS BASED ON INGESTION OF INDICATOR CHEMICALS IN GROUND WATER

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Ground Water Concentration (ug/L)</th>
<th>Ground Water Concentrations (ug/L) Based on Hazard Index of 1.0(^1)</th>
<th>Lifetime Cancer Risks of:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Adult Exposure</td>
<td>Child Exposure</td>
<td></td>
</tr>
<tr>
<td>SHALLOW GROUND WATER AT UPPER PORTION OF THE SITE (WATER TABLE AQUIFER)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>945</td>
<td>270</td>
<td>NA(^3)</td>
</tr>
<tr>
<td>2,4-Diaminotoluene</td>
<td>NA</td>
<td>NA</td>
<td>1.1 x 10(^{-2})</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>700</td>
<td>200</td>
<td>6.9 x 10(^{-1})</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>NA</td>
<td>NA</td>
<td>1.5 x 10(^{-2})</td>
</tr>
<tr>
<td>DEEP GROUND WATER AT UPPER PORTION OF THE SITE (CONFINED BEDROCK AQUIFER)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (Cr(^{+3}/Cr^{+6}))</td>
<td>35,000/175</td>
<td>10,000/50</td>
<td>NA</td>
</tr>
<tr>
<td>Nickel</td>
<td>350</td>
<td>100</td>
<td>NA</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>NA</td>
<td>NA</td>
<td>6.9 x 10(^{-1})</td>
</tr>
<tr>
<td>GROUND WATER AT LOWER PORTION OF THE SITE (ALLUVIAL OVERBANK AND SEMI-CONFINED BEDROCK AQUIFER)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>1995</td>
<td>570</td>
<td>NA</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>945</td>
<td>270</td>
<td>NA</td>
</tr>
<tr>
<td>2,4-Diaminotoluene</td>
<td>NA</td>
<td>NA</td>
<td>1.1 x 10(^{-2})</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>700</td>
<td>200</td>
<td>6.9 x 10(^{-1})</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td>NA</td>
<td>NA</td>
<td>3.2</td>
</tr>
</tbody>
</table>

\(^1\) Based on Hazard Index = Exposure Dose/Acceptable Chronic Intake and assuming an ingestion rate of 1 L/day and a body weight of 10 kg for children and an ingestion rate of 2 L/day and a body weight of 70 kg for adults.

\(^2\) Based on the following assumptions for adults: ingestion rate = 2 L/day; body weight = 70 kg; frequency of contact = 365 days; years of exposure = 70 years

\(^3\) NA = Not applicable
Table 5 (cont.)
CLEANUP LEVELS BASED ON INGESTION AND DIRECT CONTACT WITH CONTAMINATED SOURCE AREA SOIL

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Soil Concentrations (mg/kg) Based on Hazard Index of 1.0</th>
<th>Soil Concentrations (mg/kg) Based on Upperbound Lifetime Cancer Risk of 10^{-5}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ingestion1</td>
<td>Direct Contact2</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td>1.2×10^3</td>
<td>4.1×10^4</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>3.4×10^2</td>
<td>2.7×10^3</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

1. Based on an ingestion rate of 1.0×10^{-3} kg/day for worst case and an average body weight for children of 17 kg.
2. Based on an exposure amount of 3.75×10^{-4} kg/day, an average body weight for children of 25 kg, and a percent absorption of 5 percent for organic compounds.
3. Based on an ingestion rate of 1.0×10^{-3} kg/day for worst case, an average body weight for children of 17 kg, and exposure frequency of 160 days, and 5 years of exposure.
4. Based on an exposure amount of 3.75×10^{-4} kg/day, an average body weight for children of 25 kg, a percent absorption of 5 percent for organic compounds, an exposure frequency of 144 days per year, and 12 years of exposure.
5. NA = Not Applicable
LEGEND

- Screened interval
- Static water level (May 1987)

Note: D7 was completed by Olin prior to the RL.

FILE: W64532R1
LOCATION: KINGSVILLE
PROJECT: BIG D CAMPGROUND

GEOLOGIC CROSS SECTION
3G-2

PRC Environmental Management, Inc.
FIGURE 3
CONTAMINATED SOIL AND DRUM REMOVAL FOR ON-SITE INCINERATION
CREATED: 11/16/88 | REVISED: 03/03/89 | ONSITE.DWG
PRC ENVIRONMENTAL MANAGEMENT, INC.
RECORD OF DECISION

SIGN-OFF

PROJECT NAME: Big D Campground

REMEDIAL PROJECT MANAGER: Janice Bartlett

REM TELEPHONE NUMBER: 886 5438

1. **OFFICE OF PUBLIC AFFAIRS:**
 - Community Relations Coordinator:

2. **INTERGOVERNMENTAL RELATIONS:**
 - Coordinator:

3. **OFFICE OF REGIONAL COUNSEL:**
 - Site Attorney:
 - Section Chief:
 - SWERB Chief:
 - Deputy RC:
 - Regional Counsel:

4. **WASTE MANAGEMENT DIVISION:**
 - Remedial Project Manager:
 - Unit Chief:
 - Section Chief:
 - RERB Chief:
 - OSF, Associate Division Director:
 - WMD, Director:

BIAVIS:MODOC203.WPF/11/02/88
RECORD OF DECISION
SIGN-OFF

PROJECT NAME: Big D Campground
REMEDIAL PROJECT MANAGER: Janice Barnett
RFM TELEPHONE NUMBER: 886-5438

1. OFFICE OF PUBLIC AFFAIRS:
 Community Relations Coordinator:
2. INTERGOVERNMENTAL RELATIONS:
 Coordinator:

3. OFFICE OF REGIONAL COUNSEL:
 Site Attorney:
 Section Chief:
 SWERB Chief:
 Deputy RC:
 Regional Counsel:

4. WASTE MANAGEMENT DIVISION:
 Remedial Project Manager:
 Unit Chief:
 Section Chief: Donald Bruce 9/29/89
 RERB, Chief:
 OSF, Associate Division Director:
 WMD, Director

Date

(Handwritten signoffs in all sections)
RESPONSIVENESS SUMMARY

BIG D CAMPGROUND SUPERFUND SITE
KINGSVILLE, OHIO

SEPTEMBER 1989

Produced by

PRC Environmental Management, Inc.
and
ICF Technology Incorporated

Work Assignment No. : 01-S1B1
EPA Region : 5
Date Produced : September 29, 1989
ARCS Contract No. : 68-W8-0084
Site No. : OHD980611735
Site Manager : Ron Reising
Telephone No. : (312) 856-8700
EPA RPM : Janice Bartlett
Telephone No. : (312) 886-5438
RESPONSIVENESS SUMMARY:
BIG D CAMPGROUND SUPERFUND SITE
KINGSVILLE OHIO
SEPTEMBER 1989

TABLE OF CONTENTS

Introduction .. 1
Section 1: Summary of Community Comments and U.S. EPA Responses.......... 2
Section 2: Summary of Olin Chemicals Corporation Comments and
U.S. EPA Responses... 14
Section 3: Summary of Ohio Environmental Protection Agency Comments
and U.S. EPA Responses... 38

Appendix A: Submitted Community Comments
Appendix B: Submitted Olin Chemicals Corporation Comments
Appendix C: Transcript of public hearing held on Tuesday, the 8th day of
August, 1989 at the Kingsville Fire Hall, Kingsville, Ohio
Appendix D: Submitted Ohio Environmental Protection Agency Comments
This document is the Responsiveness Summary for the Big D Campground Superfund Site, located in Kingsville, Ohio. According to Superfund law, before the United States Environmental Protection Agency (U.S. EPA) can sign a Record of Decision, it is required to review and respond to comments received regarding any proposed remedial action to be taken at a site. Comments from the Kingsville community were submitted to U.S. EPA during a public comment period that was held from July 28 to August 26, 1989 and the public comments received are summarized on the following pages.

The Responsiveness Summary is split into three sections. Section 1 contains a summary of the comments received from community members and is followed by U.S. EPA's response. Section 2 contains a summary of comments received from the Olin Chemicals Corporation and also is followed by U.S. EPA's response. Finally, Section 3 presents comments from the Ohio Environmental Protection Agency and U.S. EPA's responses. In addition, the appendices include copies of all comments submitted as well as a transcript from the public hearing held on August 8, 1989 in Kingsville, Ohio.

Each summarized comment is followed by an alpha-numeric reference code indicating the source of the comments. The key to the reference code is as follows:

A) Transcript of public hearing held on Tuesday, the 8th day of August, 1989, at the Kingsville Fire Hall, Kingsville, Ohio. Following the letter "A" is the page number, followed by the line number.

C) Comments from Mr. and Mrs. Norma Thorpe, August 8, 1989.

D) Comments from Tim Baird, August 8, 1989.

E) Comments from Tracey Dreslinski, August 8, 1989.

F) Comments from the Ohio Environmental Protection Agency.
SECTION 1: SUMMARY OF COMMUNITY COMMENTS AND U.S. EPA RESPONSES

Adequacy of Sampling and Monitoring

Comment: We live directly south of the dump and want our soil and water tested. No one has ever tested it. [C]

U.S. EPA Response:

The soils and ground water which were found to be contaminated at the site are not connected to soils and ground water south of the landfill (south of the Creek). The erosion of the Creek has caused the separation. The Creek has eroded soils down to the deep bedrock which eliminates the pathway of soil contamination moving south of the Creek. Ground water flow also is interrupted by the Creek. The Hydrogeologic Investigation conducted during the RI shows that ground water flows toward and into the Creek, therefore cross-contamination of ground water cannot occur.

In addition, during the Remedial Investigation, two residential wells were sampled south of the Creek. The results of this sampling did not indicate that any contamination has migrated south of the Creek. No soil sampling was conducted off-site in residential areas.

U.S. EPA does not feel it is necessary to test any ground water or soils on property south of the Creek because a pathway for migration does not exist.

Comment: We support the Remedial Alternative #9 and hope that U.S. EPA can proceed to implement it as soon as possible. Until you do start the procedure, we would hope you would do more frequent water and soil testing. We suggest that you test all parties in the immediate area of the site, and make the test results available to them. [C]

Will drum samples or well samples be taken during the remedial action? [A, 73, 14]

U.S. EPA Response:

U.S. EPA sampled six residential wells in May, 1987 and the Ohio Environmental Protection Agency (Ohio EPA) conducted limited residential well sampling in September, 1988. These residential wells did not exhibit any ground-water contamination; however, U.S. EPA recognizes the need for further monitoring of residential drinking water wells.

U.S. EPA and Ohio EPA will arrange further sampling of residential drinking water wells north of the Creek, primarily on Creek Road. The results of this sampling event will be sent to the owners of the wells sampled. During the
remedial action, ground water will be monitored to insure that the contaminant plume does not bypass the northern interceptor trench and the extraction wells by the Creek. Sampling of drums to be removed from the landfill will be conducted prior to incineration during the remedial action.

Comment: When was the last time Mr. Baird's well was sampled? Mr. Baird's well was not sampled by Ohio EPA six months ago. [D]

U.S. EPA Response:

Mr. Baird's well, located at 3740 Creek Road, was sampled by the U.S. EPA in May, 1987. During this sampling round, the owner's name was listed as "Ramison".

Comment: We are concerned about those residents who have wells that are inside the defined plume area. Apparently the State did some sampling less than six months ago, but not all of the wells were sampled. We need to be assured that all the wells in the area are safe for us to use. [A,23,14]

U.S. EPA Response:

The plume area was defined based on numerous pieces of information, such as known concentrations of contaminants found in wells around the landfill, the ground-water flow direction and the type of soils the water is moving through. However, sampling done at the selected homes indicates that contamination is not present. In addition, during sampling events at residential wells, it was observed that the water table was very shallow (approximately five feet deep) compared to the water table on-site which is located at approximately 15-20 feet below the surface. This difference in water levels indicates that the residential wells are probably screened in a perched aquifer which is separated from, and above, the water table aquifer identified on site.

In order to verify that contamination of ground water has not occurred, U.S. EPA and Ohio EPA will arrange to conduct further sampling of residential wells north of the site, primarily on Creek Road. The results of this sampling event will be sent to the owners of the wells.

An additional ground water study will also be conducted to determine exactly where ground water contamination is located; how far it has migrated from the site. This study will involve installing more monitoring wells and sampling these wells to determine the extent of contamination.

Comment: It seems that U.S. EPA did not collect enough soil samples to accurately characterize the effect of site contamination on the soil. [A,25,20]
U.S. EPA Response:

During the RI soil samples were collected from nine borings around the landfill. These samples were selected based on screening with an organic vapor detector. The general sampling locations were just above the water table, just below the water table, just above the hard grey till geologic unit, and at the base of the hard grey till unit. U.S. EPA feels these samples characterize the soil contamination on site.

Comment: U.S. EPA doesn't know what's in the landfill. [A,68,6]

At one point, Olin Chemicals Corporation was scared about ethylene gas leaks. It killed people working for them. [A,66,20] U.S. EPA says that it has no written information on whether ethylene is in the landfill. U.S. EPA should be able to get Olin Chemicals Corporation to say what is in the landfill. [A,67,10]

We don't know what's dumped in that landfill because U.S. EPA cannot get a hold of Olin Chemicals Corporation or cannot press them into telling us what is in that landfill, and I think you better get on the ball here and try to find out what's in there, how far that landfill is going to seep into everybody's property along Creek Road - across Conneaut Creek and do something about it, because we haven't done anything about it so far. [A,86,17]

U.S. EPA Response:

On December 2, 1985, U.S. EPA sent letters to several companies in Kingsville and Ashtabula, Ohio, including Olin Chemicals Corporation. These letters requested all information the companies may have had concerning the operations at the Big D Campground site. Responses to those letters identified wastes which were disposed of in the landfill. Olin Chemicals Corporation identified four RCRA listed hazardous wastes which were disposed of in the landfill: centrifuge and distillation residue from toluene diisocyanate (TDI) production; benzene, 1,3-diisocyanatomethyl; chlorobenzene; toluenediamine (TDA). In addition, Olin identified the following materials which may have been transported to the site for disposal: spent vacuum pump oils, TDI residue contaminated with monochlorobenzene (MCB) and carbon tetrachloride, earth contaminated with TDA and TDI spills, flyash, trash, monoethanolamine (MEA), off-spec TDI, and TDA and TDI in sample cans and bottles. The vacuum pump oil may have been contaminated with TDI, MCB and trace phosgene. Thylene was not identified as having been put in the landfill.

During the RI, two test pits were excavated in the landfill to verify the presence of buried drums and other wastes. This sampling confirmed that there are materials similar to what Olin described, i.e., buried drums and bulk wastes, in the landfill. During this excavation several samples of drum contents, contaminated soils and other wastes were taken to characterize the type of contamination in the landfill. This sampling identified that contamination from the materials in the source area was similar to that found in the ground water and soils and that the contamination is migrating away
from the landfill.

Ground Water

Comment: If U.S. EPA just used a computer model to project the location of the groundwater plume, then you have no specific evidence from monitoring wells. When it comes time to install the trenches and the groundwater monitoring system, if the groundwater plume has been defined to be larger, then it is not necessary to install those trenches where you show them. They may very well be much closer to the actual site. [A,75,5] If it takes two trenches to do the job, they could both be located south of the homes. [A,75,14]

U.S. EPA Response:

The computer model which estimates the location of the ground-water plume uses the concentrations of contaminants detected in the monitoring wells to estimate the extent of the plume. See pages 4-18 of the RI report, which discusses that the level of contamination of chlorobenzene was used to determine the extent of the plume.

The location of the northern extraction trench will depend on the extent of the plume, which will be determined after further ground-water study. This trench will be installed at the downgradient (northern) edge of the plume. If it is determined that the northern edge of the plume is south of the homes on Creek Road, the northern trench will be located south of the homes.

Comment: The plume area is just an estimated area, and it seems that the plume could be moving in another direction. When will U.S. EPA know for sure the exact area of contamination so that a remedy can be designed? It appears that U.S. EPA could have collected more samples to accurately define the areas of contamination. [A,24,15]

U.S. EPA Response:

The direction of ground-water flow determines the direction of movement of the contaminant plume. Ground-water movement was determined based on water level measurements taken during the RI. See the RI report page 3-7 for details.

A further ground-water study will be conducted to determine a more precise extent of ground-water contamination. This study should be completed within the next year and one half and will provide information necessary to place and construct the ground-water cleanup system.

The ground-water samples which were collected during the RI identified that ground-water contamination does exist and that the source of contamination is the landfill, from which the contamination is migrating. The RI ground-water
study was conducted to obtain this information. When the RI was in the
planning stages, it was not known in what direction ground water was flowing.
what type of contamination existed, or the geology of the site.

Comment: Isn't it true that Olin Chemical Corporation, at some point,
placed a clay cap over the site and has a monitoring well and run-off trench
that are still in place? [A,45,12] It must be true that whatever
contamination has taken place through groundwater seepage took place prior to
1983 or 1984 when Olin Chemicals Corporation put the clay cap on the waste and
installed the water collection trench. [A,46,2]

U.S. EPA Response:

In December, 1978, Olin Chemicals Corporation installed three wells near the
Creek (see RI, Page 1-12). In December, 1983, Olin installed 11 additional
covered, regraded, and seeded the landfill. The wells and cover are still in
place.

The earliest sampling done by the U.S. EPA was April, 1982, which identified
ground-water contamination. While it is not known exactly when contaminant
migration occurred, the potential for migration has existed since the first
wastes were deposited and will continue for as long as wastes remain.

Comment: I would like more information about the ground-water treatment
plant. How long will it be in place? [A,56,8] How long will it be in
operation? [A,56,24]

We are the people who are living in those houses that will be between the
trenches. People will be working and digging and going in and out of there
for 20 years. It will change our whole quality of life. [A,57,7]

I am concerned about the location of the trenches. I'd like to know where
they are going to be before I make a comment on the Proposed Plan. I'd hate
to see the trenches go south through the row of homes where I live. [A,101,10]

I think that people should be immediately reimbursed for any damage to their
property that U.S. EPA causes when the trenches are being built. [A,102,19]

I worry about the property values. Since this has come out in the Star Beacon
anybody people perceive that property values around the site are worth squat.
Nobody is going to by that property now. When U.S. EPA get done, will all the
property owners get an affidavit saying that the property is safe and that
property values have been restored?

I'm an independent real estate appraiser. I'm not directly affected as the
property owners are, but I'm going to be indirectly affected because I'm going
to end up appraising some of the properties in the area. The Federal Home
Loan Bank made a statement pertaining to values. The Federal Home Loan Bank
has issued a memorandum or a statement that now as an independent appraiser I have to notify on the appraisal report of any property that's within one mile of a Superfund site. I don't want to speak for the underwriters, but when they see a situation like this, to me that means a big red flag, and I guess there's going to be some type of value diminished. This is a big project for a small community to fathom. [A.116,6]

U.S. EPA Response:

The ground water collection system will collect ground water in the water table aquifer with two interceptor trenches; one at the downgradient edge of the plume and one at the north end of the source area. The exact placement of the trenches will be decided after completion of a pre-design ground-water study. This study will involve installing and sampling additional monitoring wells which will better define the geology north of the site and will determine how far contamination has migrated from the site.

The trenches will be in place for approximately 20-60 years. The trenches will be installed underground to a depth of approximately 25 feet, will be filled with a permeable material to collect ground water, and should not be noticeable after they are reseeded. Once the trenches are installed and operational, personnel will not be "working and digging and going in and out" of resident's property because the ground water collection process is done by the trenches. Personnel will only be required to work on the trenches for regular maintenance checks or if a problem arises with the ground-water collection system. Personnel will be working in the ground-water treatment plant which will be located on the site.

U.S. EPA and Ohio EPA will attempt to design the placement of the trenches to minimize the impact to residences in the vicinity of the trenches. The agencies will attempt to repair to its original condition any property that is damaged during installation of the trenches.

Ground water in the alluvial and semi-confined bedrock and confined bedrock aquifers will be collected with 30 extraction wells. The collected ground water will be treated with granular activated carbon on-site and discharged to Conneaut Creek.

Ground-water monitoring wells will be installed north of each interceptor trench to monitor for any contamination bypassing the trenches. The existing shallow and deep wells on the lower portion of the site will monitor for any contaminant migration bypassing the extraction wells.

A collection time of 20 to 60 years will be required to reach ground-water cleanup levels. This estimate is based upon the amount of time necessary to remove contaminants from the saturated portion of the aquifer immediately below the source area and all contamination which has already migrated from the source area. If contaminant concentrations change over time, the sampling program may be modified.

The site will be fully cleaned up once the landfill contamination is
incinerated and the contaminated ground water clean up is completed. The agencies will then remove the site from the National Priorities List and will it will no longer be a Superfund site.

U.S. EPA cannot guarantee that property values will not be affected. The primary purpose of U.S. EPA is to protect public health and the environment. The Agency believes that the selected remedy will best address environmental impacts and future health risks posed by site conditions. U.S. EPA will attempt to minimize other impacts posed by the remedy.

Comment: Suppose U.S. EPA finds contamination in water wells, then what happens? How will we be provided with water if the water wells are found to be contaminated? [A, 70, 17]

What we were told before was that if they found any wells that are contaminated, U.S. EPA would hook everyone into either Conneaut or Ashtabula, and Olin Chemicals Corporation would have to pay for it. Does that still stand? [A, 71, 7]

U.S. EPA Response:

If contamination migrates from the site and is discovered in residential drinking water wells, U.S. EPA, in conjunction with Ohio EPA, will provide an alternate drinking-water source. One way to provide an alternate drinking-water source would be to hook-up residents to a nearby municipal water source. The U.S. EPA would try to get the PRPs to pay for the hook-up. If necessary the U.S. EPA would pay the costs and attempt to regain costs at a later date from Potentially Responsible Parties (PRPs).

Distribution of Information

Comment: Information from U.S. EPA should be sent to all Kingsville residents concerning the Big D Campground site, especially if there should ever be an evacuation. [C] If U.S. EPA continues to take samples, conduct tests, and monitor the residents that live nearby should be notified. [A, 40, 2]

U.S. EPA Response:

The U.S. EPA mailing list for the site was established based on interest shown by residents who attended public meetings held in 1987 and 1989. Whenever new information is released to the public or a public meeting is scheduled, a notice is published in a local paper to advise all residents. The U.S. EPA will advise residents living near the site of work scheduled to be conducted on-site.

Any evacuation plan, which would be prepared by U.S. EPA would contain the
names, addresses, and phone numbers of all residents in the immediate vicinity of the site.

Incineration

Comment: I am concerned about the proposed incinerator. The specifics of the incinerator must be explained to the community. For example, will the incinerator have a scrubber as part of the system? [A,23,7] What type of incinerator will it be? [A,31,18] Is there going to be a lot of noise during operation of the incinerators? [A,82,13]

U.S. EPA Response:

The U.S. EPA will mail a fact sheet on incineration to all persons on the mailing list. As soon as the specific incinerator to be used is chosen, further information will be sent to the residents on the mailing list and, if interest warrants, a meeting will be scheduled to provide additional information.

Excavation

Comment: The wind primarily comes out of the northwest and I live downwind from the site. As you plan to dig up material at the site that will be incinerated, precautions must be taken. Is there any danger to the people who live downwind of the site while U.S. EPA is digging up and transporting contaminated material? [A,22,9]

U.S. EPA Response:

Air monitoring will be conducted during excavation to ensure on-site worker protection and to monitor the air quality near the site for residents.

Comment: You are proposing excavation, but at a prior public meeting we were told that if the wastes were just dug up, there could be more problems, like another Love Canal. Now, if you go in there and start digging won't you have the same concerns? [A,58,9]

U.S. EPA Response:

The RI report identifies types of contaminants at the site. Information on the types of wastes placed in the landfill also has been obtained from Olin Chemicals Corporation. There is no indication nor any reason to believe that this site will turn into another Love Canal. However, safety precautions and
contingency plans to handle any emergency situations will be established prior to beginning any excavation work at the site.

Comment: During the excavation activities, it seems that there should be an independent party that monitors the contractors. [A, 88, 16]

How many U.S. EPA employees will actually be on the site? Does U.S. EPA actually do some of the testing? [A, 79, 12]

We are concerned about U.S. EPA's power to make sure that the cleanup is done properly. [A, 49, 21]

U.S. EPA Response:

During the design and construction phases of the project ahead, the U.S. Army Corps of Engineers will have a leading role. In the actual removal and incineration phases of the project, the Corps will procure the contractors and provide the necessary oversight as well. U.S. EPA and Ohio EPA's role will be to assure that any public health threat is addressed, that the public is informed of the progress of site clean up and that U.S. EPA's Record of Decision is carried out in full. If the responsible parties implement the cleanup, U.S. EPA and the Corps will provide oversight of all activities pursuant to a court-entered Consent Decree.

It is not possible to estimate how many persons will actually be on site during any one phase of the remedial action.

Contingency Plans

Comment: I am concerned that U.S. EPA's Proposed Plan does not contain contingencies to address problems that may still occur. For example, suppose that during the excavation process some of the drums burst, what would happen? [A, 33, 24]

U.S. EPA stated that if something unexpected happens it will be eventually detected through monitoring activities. We are concerned about residents in the area of the site in the event that something happens, like leaking toxic vapors. What happens to nearby residents until the excavation takes place? [A, 35, 5] If something goes wrong at the site, say that gas is coming off the site at a higher level than it should, we want to know that U.S. EPA won't delay in fixing the problem. [A, 51, 24] We are concerned about your contingency plans so that we can be assured that the cleanup will be conducted properly. [A, 69, 18]

U.S. EPA Response:

During the remedial design, contingency plans will be prepared to handle
emergency situations which may occur during the remedial action. As soon as an emergency situation was detected, which would entail excavation or some other measure, residents would be notified. The U.S. EPA would not neglect to tell residents of an emergency situation as its purpose is to protect human health and the environment.

Once the remedial design is completed, prior to beginning the remedial action, the design plans and related documents will be made available to the public at the repository located in the Kingsville Public Library.

General

Comment: Alternative #9 says that you are going to prohibit the use of the water wells. Is that what you're going to do? Everybody has a well. [A,72.3]

The fact sheet says, "...EPA would prevent the use or installation of groundwater supply wells in the area of the site..." [A,72,15]

U.S. EPA Response:

The use or installation of drinking water wells located in the contaminated aquifer will be prohibited. If contamination related to the site is found in residential drinking-water wells, the U.S. EPA, in conjunction with the Ohio EPA, will provide an alternate drinking-water supply. The actual extent of the contaminated ground-water plume will be better defined after completion of the additional ground water study.

Comment: I would like to know why U.S. EPA does not give the community any direct answers. U.S. EPA says "I'm not sure," or, "we're going to have to monitor more." Why doesn't U.S. EPA have someone talk to the community who knows more about the site and understands the issues. [A,88,23]

I think that the representatives from the U.S. EPA here tonight have tried to divide and conquer these people by stating, "that later on we will answer your questions on a one-to-one basis."

It is really hard for me to be in favor or not in favor of a remedial plan when we don't have any specific information. U.S. EPA can't tell us where the trenches are going to be placed or the location of the plume. How can the community make a comment on this? We don't know who's going to be affected by this. [A,99,15]

I think that before we accept or disapprove anything we should have a field representative or an engineer from the U.S. EPA who is familiar with this area, who is familiar with the dump, who knows what's going on, to come out and explain the issues to the people of Kingsville. [A,100,11]

When such time as you people come back with a solid workable plan then I'll give a comment on whether I feel it's to my benefit or not. I believe that
you should have another meeting when you come back with a solid plan, not just a proposal. [A,102,11]

U.S. EPA Response:

At the public meeting, the only types of questions which U.S. EPA deferred to be answered later or were not able to answer were either specific questions posed by residents living near the site, i.e., issues such as standing water in their backyards, and specific questions on the remedial action, or the location and type of incinerator to be used on-site. Information about residential concerns was not known prior to the meeting. If U.S. EPA and Ohio EPA had been aware of these concerns prior to the meeting, these questions could have been researched. The design specifications of the remedial action will be developed during the remedial design phase. Therefore it was not possible during the Proposed Plan public hearing to tell the community exactly where the interceptor trenches will be located, or what type of incinerator will be used on site, and what type of scrubber it will have. During the remedial design phase all the specifics of the remedial action will be decided. Once the remedial design is completed the remedial action cleanup of the site will begin.

The RI and Feasibility Study (FS) identified the type of contamination at the site, what media have been affected by the contamination, and the general extent of migration of the contamination. Using this environmental data, the U.S. EPA and Ohio EPA developed a Proposed Plan which outlines the best way to address the contamination at the site. During the Proposed Plan and public comment period, the Agencies asked the public to comment on the concepts presented in the Proposed Plan. The information currently available will be fine-tuned during the remedial design to gather engineering data, such as exactly where to place the trenches and what type of incinerator will best handle the wastes at the site.

U.S. EPA's Remedial Project Manager and Ohio EPA's Project Coordinator designated for the site are the technical contacts. They oversee all work done at the site, solve problems which arise, and review all documents produced, in general, manage the site.

Comment: Was there a fire on the site about 10 to 12 years ago? If so, what effect would the fire have on conditions at the site? [E]

I've seen the landfill, or have heard of the landfill on Creek Road being ablaze, on fire.

U.S. EPA Response:

The only information located about a fire in the area was one which did not occur at the Big D Campground site. Fiberglass wastes were dumped alongside Conneaut Creek at a site on Creek Road approximately one mile west of the Big D site. That site apparently caught fire several years ago.
Comment: We are concerned that U.S. EPA will pick another less protective alternative for addressing contamination issues at the site. If funds run out, U.S. EPA may pick a cheaper remedy.

U.S. EPA Response:

The Proposed Plan discusses U.S. EPA’s preferred alternative for cleaning up the site. Once the Record of Decision (ROD) is signed the remedy is finalized and cannot be changed without notifying the public, beginning a second public comment period for the new remedy and signing another ROD.

If funding problems occurred, the remedial action may be slowed but U.S. EPA would not choose a cheaper remedy simply to save money. The remedy chosen with this ROD is the most cost effective and protective of human health and the environment.
SECTION 2: SUMMARY OF OLIN CHEMICALS CORPORATION COMMENTS AND U.S. EPA RESPONSES

ACETONE

Comment: The organic compounds detected in the deep wells are primarily acetone, methylene chloride, and chlorobenzene. Section 4.3.3 of the RI report notes that acetone, methylene chloride, chlorobenzene, toluene, and trichloroethylene were detected in some field and/or laboratory blanks up to 305.8 ppb of total VOA's. Acetone was used as a rinse in decontamination of ground water sampling equipment. This is especially troubling since acetone is the compound reported in the highest concentrations and with the greatest frequency in the deep wells. [8,2]

U.S. EPA Response:

Only one field blank sample had other organic compounds than acetone and methylene chloride (field blank sample BD-FB2-01). This was a field blank of a bladder pump which was not used in sampling any of the deep wells. As stated in the RI report, the compounds found in field blank samples were compared to the analytical results and, when appropriate, the analytical results were eliminated from consideration. Furthermore, neither acetone, methylene chloride, or toluene were used in calculating potential risks.

Comment: Section 4.3.3.3 of the RI states "Acetone, a common field and laboratory contaminant was the only compound detected during both sample rounds in a single deep well." If acetone is not included, the detected total VOA concentrations in the deep wells exceed 10 ppb only in one sample (34.2 ppb in the first sample from Well 4D). The latest measurement from Well 4D was 0 ppb. [8,3]

U.S. EPA Response:

Table 4-5 in the RI report identifies acetone separately in the distribution of organic contaminants at the site. Total VOAs are not listed. As stated above, acetone was not used in calculating potential risks.

Ground Water

Comment: Chemical data presented in the RI report about ground water from the confined bedrock aquifer raises serious concerns with respect to the validity of the RI data. Specifically, we are concerned about the following:
1. Validity of the ground water samples and analysis from the deep wells (those screened in the unit designated the confined bedrock aquifer) is questionable.

2. Significance of the low, inconsistent concentrations detected in the deep aquifer is doubtful.

3. Temporal patterns in the data suggest that the concentrations in ground water from the deep wells may result from residual contamination introduced to this depth by drilling for installation of the monitor wells.

4. Well development was not sufficiently defined and may not have been properly done. [B,2]

U.S. EPA Response:

U.S. EPA does not believe that there is any problem with the data obtained from deep wells.

The significance of low concentrations of contaminants found in the deep aquifer is important. Tetrachloroethene found in one deep well has a 5.1 x 10^-4 cancer risk.

All deep wells were constructed by properly casing off the upper aquifer followed by continued drilling into the deep aquifer using equipment not used in the water table aquifer (as discussed in Appendix A of the RI report). Temporal patterns may be indicative of pulses of contamination being released from the landfill. Well 2D showed an increase in chlorobenzene concentrations between round 1 and 2.

Wells were developed using a surge block coupled with repeated bailing and pumping (as discussed in Appendix A of the RI report). U.S. EPA believes well development was conducted properly.

Comment: The spanned period of four months, for well sampling and analysis, is insufficient to make ground-water quality conclusions. The data for repeated samples from any single deep well is inconsistent. For example, subsequent samples resulted in the following total VOA concentrations.

- well 1D 0 to 76 ppb
- well 2D 1,100 to 118 to 0 ppb
- well 3D 628.6 to 48 to 0 ppb
- well 4D 71.2 to 900 to 0 ppb
- well 5D 5,922 to 0 ppb
- well 6D 430 to 38 ppb [B,3]

In the last ground-water sampling event, four of the six wells did not report any detectable VOAs. Even if the sampling and analysis results were not of
questionable validity the data would not necessarily demonstrate contamination of the confined bedrock aquifer. The data for total VOAs listed above illustrate a general trend of decreasing concentration with succeeding samplings.

U.S. EPA Response:

The deep well analytical results are not inconsistent. As discussed above, it is not unusual for contaminants in the ground water to move in pulses which will vary the concentration of contaminants found in the ground water throughout the year.

In addition, the total VOA concentrations listed in this comment are not correct. Wells 2D, 3D, and 4D did not show 0 ppb total VOAs in the last sampling event. As discussed in the footnotes of Table 4-10 of the RI report, these samples were analyzed for extractables but not analyzed for volatiles.

Comment: Dedicated sampling equipment should have been used to avoid problems of equipment contamination during sampling. Because of the presence in the blank samples of the same contaminants reported to be present in the samples and the inconsistent results from repeated samplings, the ground-water sample and analysis results do not indicate significant concentrations of organics in the deep ground water. [8,3]

This suggests that the detected organic compounds could be the result of contamination from shallower zones that was carried into the deeper aquifer during drilling for installation of the deep monitor wells. Repeated purging and sampling of a well would gradually reduce the constituent concentrations resulting in lower detected concentrations with repeated samplings and perhaps invalidate the conclusion that no deep contamination exists. [8,4]

U.S. EPA Response:

The field blank sample which showed organic compounds other than methylene chloride and acetone (BD-FB2-01) was a sample from a bladder pump. This sampling pump was not used to sample the deep wells. All other field blank samples indicate that decontamination procedures were adequate and did not introduce organic compounds into the samples (with the exception of acetone and methylene chloride which are common lab contaminants).

Comment: It should be noted that in comparing production well contaminant concentrations with site monitoring well concentrations in the same aquifer, lower concentrations may occur in dynamic systems such as production wells in comparison to stagnant systems such as monitoring wells. The use of monitoring well data applied to production well consumption may overstate the health risk. [8,13]
U.S. EPA Response:

In order to prevent sampling of "stagnant systems", purging is done prior to sampling. Furthermore, MCLs are based on water quality from a "tap" or faucet.

Comment: The data in Appendix C of the RI report does not indicate the volume of water that was removed from each well during development and during purging for each sampling event. This information is necessary to evaluate the validity of the ground water samples. [B-4]

U.S. EPA Response:

Five to 40 gallons of water were removed from the deep wells during development, 15 to 60 gallons were removed from the shallow wells during development, and 25 to 70 gallons were removed from the creek wells during development. The exact quantity removed was dependant on well yield. In all cases, wells were developed until the water from the wells was clear and as sediment-free as possible. Conductivity, pH and temperature were also monitored.

Comment: Boreholes 2D, 3D, and 4D were advanced 10 to 20 feet deeper than the planned well depth. On attempting to plug the bottom of these boring cement bentonite grout rose in the borehole through the screened interval. Borehole 2D was apparently properly plugged and abandoned and the well was installed in a new borehole adjacent to the first location. Borehole 3-D, however, was drilled out using a core barrel. Borehole 4-D was flushed with water to remove the grout. The adequacy of the measures for wells 3-D and 4-D is questionable and residual grout in the wells may impact quality of water samples from these wells. The procedure used for the borehole 2-D should also have been used for 3-D and 4-D. [B,4]

U.S. EPA Response:

The U.S. EPA decided not to abandon and redrill wells 3D and 4D because the wells were able to be redrilled through the grout (3D) and flushed (4D). It was determined that the presence of grout would not impact the quality of samples acquired from these wells.

Comment: Northward movement of shallow ground water is stated as fact. This is not documented and is not justified by the data in the RI report. Table 3-1 (p.3-16 of the RI report) shows some higher ground water elevations north of wells 1S, 5S and 4S. For example, water levels in 3S, the northern most monitor well, and RW3 (a residential well located about 600 feet north of the reported ground water divide at the site) were 712.90 feet and 719.83 feet, respectively, on September 26, 1987, and higher than the wells immediately to the south. In fact, the ground water elevation was higher in
the northern most shallow monitor well, MW-3S, than in well to the south of it on four of the six dates on which ground water elevation measurements were reported. Ground-water elevation in MW3 was 720.07 feet msl on May 16, 1987, higher than monitor wells located to the south. Furthermore, it is difficult to predict a contour of 714 feet as shown in Figure 3-3 (p.3-8 of the report) with the existing ground-water elevation data. This contour was drawn considerably north of well 3S, the northern most monitor well and the northern most data point. Also, the water level around the 712 feet contour line in Figure 3-4 (p.3-9) can be interpreted in other ways. For instance, an east-west trough could exist instead of a closed depression. [B,8]

U.S. EPA Response:

U.S. EPA interprets ground-water movement in the water table aquifer is to the north. This is substantiated by the water level measurements taken in monitoring wells on-site, and presented in Table 3-1 of the RI report. Water level measurements obtained from residential wells are not used to contour ground-water flow because the ground water in residential wells has different characteristics from ground water in monitoring wells on site (determined from review of inorganic data and the use of modified stiff diagrams). In addition, northern flow of the shallow ground water is substantiated by the presence of contamination from the landfill being detected in all shallow ground-water monitoring wells north of the landfill.

Comment: In the modeling of the plume, it has been assumed that the water table aquifer is infinite in extent. This assumption is contradictory to the actual physical characteristics. In fact, data were not presented that verify that the aquifer is continuous in the area included in the model. Also the model did not account for the vertical recharge from the surface. [B,11]

U.S. EPA Response:

The model was used as a tool to estimate the extent of contamination based on existing site data. The assumption of an infinite aquifer and no vertical recharge are common assumptions in analytical models. These assumptions were noted in the selection of the model and the results are accordingly used as just one tool in remedy selection.

Comment: The Princeton Model is limited to modeling a single source with a single ground-water flow direction. The study used a combination of results from multiple model runs as a weighted average of concentration with respect to discharges from the two source areas. Theoretically, since it is not based
on solute mass balance or mass conservation, the weighted average concentration may deviate remarkably from the true value at each location. It is, therefore, essential to verify the results by running other models (analytical or numerical) and comparing the results. No indication of model verification was submitted.

In light of the above, we suggest that the following be considered further:

1. Obtain water level data for additional dates and provide more data points further north.

2. Utilize another analytical model to verify the Princeton Model's results with the same given assumptions;

3. After adequate data is obtained, refine the assumptions and use other analytical or numerical models to obtain results based on more realistic physical conditions. A numerical model or combination of analytical and numerical models is highly recommended since it can better simulate the subsurface conditions at the Big D site;

4. Sensitivity analysis of the responses of ground water flow and contaminant transport with respect to changes in the hydrogeological parameters is essential since the input values are based on assumed values and may differ very significantly from the actual conditions. No sensitivity analysis is reported in the RI.

[U.S. EPA Response:

Confirmation of ground-water data was not determined to be necessary during the RI/FS because U.S. EPA will be obtaining further information on ground-water flow and the extent of the plume during a pre-design study, as discussed in the FS and ROD. This study will involve confirming what was presented in the RI report, south of the site, and installing and sampling additional monitoring wells which will better define the geology north of the site, the ground-water flow, and how far contamination has migrated from the site.

The study will initially concentrate on the area north of the site where the plume may have migrated. This area will be determined based on ground-water modelling and results from the last round of ground-water sampling during the RI. If ground-water contamination has not migrated to this theoretical point, additional wells will be installed closer to the source area until the boundary of the plume is identified. Conversely, if contamination has migrated beyond the theoretical limit, additional wells farther from the source area will be installed in order to place bounds on the location of the plume. The full extent of migration will be established prior to designing the ground water collection and treatment system.

Comment: The estimated extent of shallow ground water contamination to the
north of the site is based solely on the predictions from the analytical model and actual ground water data are limited to the southern edge of the area modeled. Contradictions exist between the model and the available data and numerous unverified assumptions are present in the analytical model and the estimation of contaminant extent. Evaluation of the extent of contamination requires collection of actual hydrogeologic and water chemical data within the area modeled. The actual extent may vary significantly from what has been predicted in the RI report, as is indicated by the available data for residential wells. [B.13]

U.S. EPA Response:

The limitations of the ground-water model are discussed above. We agree that residential well water quality data does not support the northern extent of the plume. That is the purpose of the pre-design ground water study which the U.S. EPA will conduct to define the extent of the contaminant plume. Based on the information gathered during this study, the actual placement of collection trenches and extraction wells can be designed.

In addition, soil gas sampling was conducted to assist in verifying the location of the modeled plume. This investigation detected target compounds in the soil gas in areas of the predicted plume extent north of any ground-water sampling point (see Appendix J of the RI report).

Comment: Table I of Appendix H of the RI report lists the ground water velocity used in the model as 3.64×10^3 cm/sec. This equivalent to about 1,030,000 feet per day. Presumably this is a typographical error. What ground water velocity was used? [B.13]

U.S. EPA Response:

The correct velocity used in the model is 3.64×10^3 cm/sec.

Comment: The data presented in the RI report is not adequate to verify that the shallow aquifer is continuous to the north of the site. Additional measuring points are necessary to define the direction of the ground water movement from the site. [B.8]

U.S. EPA Response:

It is appropriate to assume that the aquifer is continuous because there is no evidence to indicate otherwise. As discussed above, an additional study of the extent of the plume, the ground water and the geology north of the site will be conducted during a pre-design study prior to finalizing the remedial design.
Comment: Page 3-7 of the RI report states that since the unusually low water table elevations in the fall do not represent normal site conditions, ground-water flow systems have been discussed using May 1987 data. If this is the case, ground-water flow to the north would be primarily uni-directional as indicated by Figure 3-3. This is contradictory to the two-lobed contaminant plume used in the analytical model and depicted in Figure 4-6 (p.4-19 of the RI report). The pattern of a two-lobed plume could be simulated under the initial condition of two-directional ground water flow as depicted in Figure 3-4 (p.3-9 of the RI report). With the available data, the conclusions arrived at on p.3-7 and p.4-18 of the RI report regarding the northward movement and the two-lobed plume are not substantiated. It should be noted that seasonal fluctuations in the ground water elevation occur even in normal precipitation years and the measurements during the RI may reflect normal trends although the actual elevations would vary from year to year. It is possible that the northern portion of the site exhibits a seasonal reversal of flow direction. [B,8]

U.S. EPA Response:

The flow direction in figure 3-3 and 3-4 are not markedly different. The test pit investigation indicated the presence of two separate source areas which are divided by undisturbed soils. In addition, ground-water level measurements and contamination detected in all wells north of the landfill indicate northern movement of ground water. The presence of a northern plume of contamination was verified by soil gas sampling. If a seasonal reversal of flow direction does occur, it does not change any conclusions reached by U.S. EPA.

Comment: Page 4-12 of the RI report states that well RW-3 “is probably not screened in the same water bearing unit as the monitoring wells at the Big D site. Well construction, recharge rates, and static water level indicate this well receives water from a localized perched water table zone.” The basis for this conclusion is not documented in the RI. The data presented in the RI report (Table 1 of Appendix C) does not distinguish the aquifer at RW-3 from that at RW-1, RW-2, RW-4 and the onsite monitor wells completed in the water table. Table 1 of Appendix C (see volume II of Final RI Report) lists RW-3, RW-1, RW-2 and RW-4 as screened in the overburden (assumed based on discussions with owners). No hydrogeologic analysis or other data is presented to indicate that RW-3 is not screened in the same aquifer as the other residential wells or the shallow onsite monitor wells. The ground water elevation in RW-3 is higher than in the northern most shallow onsite monitor wells and this may reflect a ground-water elevation surface for the water table different from that assumed in the RI rather than necessarily indicating a different aquifer. It should be noted that the RI report also indicates that the water table aquifer onsite is a perched aquifer in the overburden. [B,8]
U.S. EPA Response:

The discussion regarding the water-bearing unit in which RW-3 is screened applies to all residential wells. The discussion on page 4-12 of the RI report only mentioned well RW-3 because inorganic contaminants were detected in this well. The basis for the conclusion is information obtained by utilizing modified stiff diagrams which indicate a different ground water chemistry in residential wells compared to on-site monitoring wells. The water table aquifer on-site is not a perched aquifer because an unsaturated zone does not exist below this aquifer. However a perched water table aquifer was discovered during the soil gas investigation at sample number SG-19 (see Appendix J of the RI report, p.4).

Comment: According to the RI report, one of the stated reasons for the two-lobed contaminant plume is surface water recharge from the drainage swale at the northern end of the site. If the drainage swale is a significant source of recharge, the local ground water flow would be expected to be southward from the south side of the swale and northward from the north side of the swale (i.e., a ground water divide). This is contradictory to the statement in the RI report that ground water moves northward. [B.10]

U.S. EPA Response:

The effect of the drainage swale does not appear to be significant in altering ground-water flow to a degree which could be seen in ground-water elevations obtained during the RI. However, as stated in the RI report, the drainage swale may be one reason for the two-lobed plume.

Comment: Residential well RW2, located at 3700 Creek Road, does not show any chlorobenzene contamination or other contamination believed to come from the site. However, Figure 4-6 shows that the computer simulation predicts that there is about 3mg/l of chlorobenzene in the vicinity of RW2. The detection limit for chlorobenzene is .005mg/l. The accuracy of the transport model is implied in the RI report to be about one order of magnitude, but in this case is in error by at least a factor of 600. The assumptions on which the model is based may not be valid. [B.10]

U.S. EPA Response:

This comment is not clearly understood because RW2, located at 3700 Creek Road, is not shown on Figure 4-6 of the RI report. U.S. EPA assumes that this is a typo, and the comment applies to RW3.

RW3 was not installed by U.S. EPA and is therefore not constructed for the purpose of monitoring the water table aquifer. As discussed above, evidence indicates that this well in installed in a perched aquifer above the water table aquifer.
Soil

Comment: Two background soil samples were collected, both from the same location. The RI then states that "As shown in Table 4-1 the highest borehole concentrations for all compounds except silver exceeded the concentrations detected in the two background samples. The highest concentrations of each inorganic compound detected in the test pits exceeded the concentrations in both background samples with the exception of antimony, arsenic, beryllium, cobalt, iron, cyanide, selenium, thallium, and vanadium." These statements, however, it should be noted that this does not necessarily indicate elevated concentrations in the soil borings and test pits relative to the two background samples. Most of the inorganic constituents analyzed are present in varying concentrations in soil samples as a result of natural processes. The naturally occurring concentrations will vary from location to location and will exhibit a statistically distributed range of values which is dependent on the number of samples of the total population of samples which have been analyzed. That is, if the range for a very small number of values is compared to the highest value observed from a much greater number of samples collected from the same population, it is expected that some values will exceed the range of the small number of samples. Since many more samples were analyzed from boreholes and test pits than from background locations, it should be expected that some values will exceed the range exhibited by the background samples. Note that the lowest concentrations of the borehole and test pit samples for the inorganic constituents are also lower than or equal to (for not detected) that lowest values for the two background samples. The comparisons used and conclusions reached are statistically invalid. [3,10]

U.S. EPA Response:

Inorganics in the soil pose no significant risks with the exposure scenarios evaluated for this site.

Comment: Soil gas concentration contours have not been provided to help evaluate the validity of the estimated extent of the ground-water contamination plume, as shown in Figure 4-6 of the RI report (p.4-19). Further verification of the results is necessary. [3,11]

U.S. EPA Response:

Limited sampling points, extreme stratification of the soils, and wet conditions prevented U.S. EPA from confidently contouring soil gas data.

As stated above, additional pre-design studies of the ground water north of the site will be conducted.
Comment: For Tables in chapter 6, the upper bound excess lifetime cancer risk value mathematically should be reported with three significant digits to obtain more uniform calculation results. Also, in the selection of soil ingestion rates - the soil ingestion values presented in the EPA Superfund Exposure Assessment Manual (SEAM) p. 168, Table A-5 are presented by age group and are more accurate. The information in this reference also provides time periods for various ingestion rates making the assumption of years of soil ingestion unnecessary. [B,13]

The worst case soil ingestion of 1×10^{-3} was selected. Is the basis for selecting this value valid? See page 6-5. [B,26]

U.S. EPA Response:

The Superfund Public Health Evaluation Manual (SPHEM) suggests that the upper bound cancer risk be reported with one significant figure. The assumption for soil ingestion and the use of a 1×10^{-3} kg/day soil ingestion rate are based on a U.S. EPA directive issued on January 27, 1989.

Comment: The scenario used regarding direct contact with contaminated soils extent of exposure (p.6-6) assumes that future direct contact with soils will involve soil up to 8 feet below the ground surface. The basis of the assumption (depth of 8 feet rather than surface soil) needs to be presented. Use of surface soil would probably result in significantly lower exposure. The exposure via this pathway is zero. [B,14]

U.S. EPA Response:

The assumption for future soil exposure assumes that houses will be constructed at the site and soil will be excavated to eight feet to install a basement (p. 6-2 to 6-3 in RI).

Comment: On page 6-6 of the RI report, the potential dermal exposure is estimated to be 1 mg soil/cm² body area. This estimate is high, a value of 0.6 mg soil/cm² is more accurate (Lepow, 1975). The value of 1 mg soil/cm² overestimates the health risk and this should be stated. The Superfund Public Health Evaluation Manual (SPHEM) states that the uncertainties of each assumption made during the risk evaluation process and the resulting over or underestimation of health risk must be clarified. Evaluation of the impacts of assumptions was not made for any exposure assumptions. [B,14]

U.S. EPA Response:

The U.S. EPA chose the value of 1 mg/cm² to be a median value. The commentor
cited a value of 0.6 mg/cm² while U.S. EPA's Superfund Exposure Assessment manual cites (Harger 1979) values of 1.45 mg/cm² for potting soil and 2.77 mg/cm² for clay. The U.S. EPA believes 1 mg/cm² to be a reasonable compromise between the various literature values.

Comment: The basis for the selection and use of an additional carcinogenic potency factor for calculating dermal exposures was not stated. The impact of the use of these factors in addition to the use of factors developed for ingestion of contaminants on the overall risk estimate was not discussed. [3.14]

U.S. EPA Response:

The use of potency factors for dermal exposures is based on the fact that a percentage of the chemical will pass across the skin and enter the blood stream. Therefore U.S. EPA applied an absorption factor to the dosage calculation which reflected the amount (percentage) that would cross the skin barrier and enter the blood stream.

Comment: It is stated on page 6-11 of the RI report that the sampling results for the residential wells did not reveal any inorganic or organic contaminants that could be attributed to releases from the Big D site. It should have been stated that for incomplete exposure pathways there is no actual risk. (See Reference SPHEM, Page 36, first column, second paragraph). There is no potential risk associated with the site groundwater at this time due to an incomplete exposure pathway. Risk is overestimated because it is assumed that the pathway is complete at this point. The potential for future risk exists only if a production well is placed in a location completing the exposure pathway. [3.15]

U.S. EPA Response:

The RI report acknowledges that no one is currently exposed and that the risks are based on the assumption of future exposure. The risks are estimated based on a series of assumptions for future exposures associated with contamination of nearby residential wells or drinking water wells completed on-site or off-site at some time in the future. Actual or threatened releases of hazardous substances from the site may present an imminent and substantial endangerment to public health, welfare, or the environment if contaminants in the landfill and migrating from the landfill are not addressed.

Comment: When referring to risk, it should be clarified in the RI report that the future is based on a period of 70 years for risk assessment purposes, not an infinite time period. [3.15]

25
U.S. EPA Response:

An exposure may last longer than 70 years. This time frame is used to estimate lifetime risk from exposure. If the source is not removed, it is possible that exposure could continue for longer periods.

Comment: The RI report states that both acute and chronic exposures for the potential ingestion of ground water were evaluated. Only chronic hazard index values can be found in the RI report. [B.15]

U.S. EPA Response:

Only chronic hazard indices were evaluated. The statement "Potential ingestion of ground water ... was evaluated ... for both acute and chronic exposures" (p.6-12 of RI report) relates acute and chronic exposures to noncarcinogenic and carcinogenic effects, respectively.

Comment: For infrequently found contaminants, geometric mean concentrations were not calculated and the contaminant was not evaluated under probable conditions. In order to evaluate these contaminants under probable case conditions, the geometric mean can be calculated utilizing a concentration equivalent to one-half the detection limit for that specific contaminant when there are "non-detectable" levels. This approach more accurately estimates the actual or probable exposure. [B.15]

U.S. EPA Response:

The assumptions used by the U.S. EPA exclude the infrequently found contaminants from analysis under the probable case exposure. This also assumes that these contaminants will not cause an unacceptable risk under the probable case exposure. In addition, risks have already been identified in ground water, this method would only increase the risks already identified.

Comment: It is stated in the RI report that extrapolations from animal studies do not address human-animal differences in absorption. This is not true - all effect levels obtained from chronic animal studies are multiplied by a safety factor of 10 to account for interspecies variation. It is also stated that the ACI and CPF calculations assume that the human body absorbs 100% of the contaminant, the same extent as an experimental animal. For most compounds this is not true. The reasons for excluding the percent contaminant absorbed in equations 6-1 and 6-2 in the RI report are not satisfactory. However, by assuming 100% is absorbed, the estimated dose is higher and the calculated risks are more conservative. [B.16]

The RI states that 1% inorganic and 5% organic dermal exposure assumptions would be used, these percentages are used in equations 6-1 and 6-2 in Appendix H of the RI report. [B.16]
U.S. EPA Response:

The assumption made by U.S. EPA was that no adjustment in the dosages for ingestion exposure would have to be made to account for the absorption rate in man. The ACI and CPF are based on a dose ingested or administered not on a dose absorbed into the bloodstream. Although 100% is absorbed into the bloodstream, the U.S. EPA assumed that inorganic contaminants would absorb into the bloodstream at a rate that is one percent of the rate of absorption via ingestion. This absorption for organics was five percent.

Comment: The BCF values quoted for chlorobenzene range from 10 to 4185. A value of 465 was selected and the basis for this selection is not stated. A more conservative approach would be to use the highest value. Recalculations using BCF of 4185 gives a HI of 0.32 which is still in the acceptable range. [B.16]

U.S. EPA Response:

The BCF chosen by U.S. EPA related to the species found in Conneaut Creek.

Comment: In chapter 6 of the RI report, the estimated dose and HI should have been calculated for barium, lead, and beryllium. [B.16]

U.S. EPA Response:

The U.S. EPA felt that it was appropriate to only perform qualitative analysis of these contaminants due to a lack of good BCF data for these metals.

Comment: The estimated dose for chlorobenzene is 9.5E -01 not 9.21E 01 mg/kg. (See page 6-16 of the RI report) The HI is 3.3E -02 not 3.4 x E -02. [B.17]

U.S. EPA Response:

The error is noted. The risk is still not significant.

Comment: In Appendix H of the RI report it is stated that exposure dose is equal to 10,230 mg/kg exposure dose should equal 10,230 mg/kg or 10,230 ug/kg. [B.17]

U.S. EPA Response:

The exposure does should be 10,230 ug/kg/day and this value was used in all
calculations.

Comment: A discrepancy exists in the average body surface area of a child used in the risk assessment. Although EPA (1985) stated the average surface is 1200 cm2, the 1988 Superfund Assessment Manual (Page 127) quotes that the dermal area of a child is 9400 cm2. [5,18]

U.S. EPA Response:

The difference between sources is noted. However, the existing risk is well below the acceptable range and using the newer value would lower the dose and resultant risk even further.

Comment: The derivations and calculations of the carcinogenic potency factors and noncarcinogenic acceptable daily intake values should be discussed in more detail. In addition a discussion of the safety factors included in the calculations should be included. This information is necessary to determine the validity of the conclusions. [5,18]

U.S. EPA Response:

Since this information is readily available from U.S. EPA's IRIS data base, it was not included within the report.

Comment: Two of the ADI values i.e. those for barium and beryllium which were used in the study differed from the values quoted in the 1986 EPA Exposure Manual. If some other source was used, it should be referenced. In the case of barium, the value differed by 11% but in the case of beryllium, the figure used, 5.00E-03, was one order of magnitude less sensitive than the value of 5.00E-04 quoted in the 1986 EPA manual. In the text it was inferred that a 1987 revision of the Toxicity data was the source of some of the ADI values. A full reference to this manual was not made as a footnote to the appropriate tables. [5,18]

U.S. EPA Response:

The full reference is given under footnote (a) in the table.

Comment: Risks were evaluated on future site use (residential scenario). Risk associated with present use needs to be discussed.

U.S. EPA Response:

At present none of the residential ground water wells at the site are contaminated with chemicals related to the site. Therefore, no completed
human exposure route exists at the Big D site and no risks were calculated for present exposures.

Comment: The procedure to calculate the exposure dose is different - the intake factors defined below are not the same. Why are these values different?

Intake factor = exposure dose
maximum concentration [B.25]

U.S. EPA Response:

U.S. EPA followed the general procedures for calculating exposure dosages found in U.S. EPA's Superfund Health Evaluation Manual. This document calls for two different methods for calculating dosages - one for exposure to non-carcinogenic chemicals and another for exposure to carcinogenic compounds.

Comment: Calculations for worst and probable case conditions for soil ingestion utilized maximum and mean concentrations as well as frequency of exposure. Calculations for worst and probable case conditions for water ingestion utilized maximum and mean concentrations and frequency of exposure was excluded. The use or non-use of a frequency factor requires explanation. [B.25]

U.S. EPA Response:

The U.S. EPA assumed that the water ingestion would be relatively uniform in the exposure scenarios given and therefore did not include frequency of contact as a factor in the calculations.

Comment: It is stated that the environmental exposure considered the most likely to occur is the ingestion of aquatic life that inhabits Conneaut Creek. No rationale was presented to support this statement, nor was the risk for this exposure route calculated. Please explain. [B.25]

U.S. EPA Response:

The exposure route at the site that could occur under the present conditions is the ingestion of aquatic life. People catch and eat fish caught in Conneaut Creek. As discussed in the RI report the potential risk to human health from ingestion of aquatic life from Conneaut Creek is virtually zero.

Comment: The rationale for including the factor frequency of contact (days) in the exposure dose equation of 365 days (6-1) is not clear. Frequency of exposure is not generally considered in calculating a hazard index. [B.26]
U.S. EPA Response:

Since U.S. EPA focused on the chronic exposure to non-carcinogenic chemicals, the EPA felt that it was appropriate to average the exposure dose over a one-year (365 days) exposure. It was felt that if the dose was calculated by not taking into account frequency of contact this could overestimate the exposure to these chemicals.

Comment: The WQC for chlorobenzene was quoted as 7.2E-04 ug/L for consumption of drinking water and aquatic organisms and 7.4E-04 ug/L for the consumption of aquatic organisms only from a 1980 EPA reference. A more recent reference, EPA SPHEM, 1986, gives WQC value of 488 ug/L for chlorobenzene for both consumption of aquatic organisms and drinking water and for the consumption of drinking water only. [B.26]

The WQC for chlorobenzene taken from a 1980 EPA reference is 7.2E-04 and 7.4E-04. The EPA manual gives a value of 488. [B.26]

U.S. EPA Response:

The mistaken value reported was for hexachlorobenzene, the correct value for chlorobenzene is 488 ug/L. The correct value was used in the comparison, so no change in the text is needed (see p. 6-26 of RI report).

Test Pits

Comment: On page 4-3 of the RI report it is stated that "based on the results of the test pit excavation the estimated volume of contaminated fill is 25,000 to 35,000 cubic yards." Were the fill estimates actually made from conversations with the transporter, from the geophysics, or from the test pits? It is not clear. The actual calculations and assumptions used should be presented. [B.19]

On page 4-3 of the RI report landfill volumes are "estimated from the geophysical survey to be 35,000-52,000 cubic yards." There is no discussion upon which that statement is based. [B.19]

U.S. EPA Response:

The estimated volume and location of the source area is based on information from the transporter, the generator, geophysical survey, and test pits. The actual volume will only be known when excavation is complete.

Comment: On page 7-1 of the Summary of Conclusions of the RI report, the statement is made "Based on the geophysical survey and the test pit excavation
the air of relatively high concentrations of contaminants is much lower than for other alternatives. The only disadvantage listed for Alternative 6 relative to some other alternatives is that the long term risk (presumably of release of slow moving contaminants to ground water) is expected to be higher. Such releases can be detected by monitoring and since the ground water moves very slowly, allows considerable time for corrective measures before human exposure would occur. The short term risk of exposure to relatively high concentrations from fast moving air releases during alternatives requiring extensive excavation allows little time for response and appears to represent the greater risk to human health. [B.20]

U.S. EPA Response:

U.S. EPA has determined that the selected remedy is the most appropriate solution to remediate the contamination at the site. The selected remedy is the most protective of human health and the environment, eliminates long term risks, reduces toxicity, mobility and volume, is easily implemented and complies with ARARs. The selected remedy poses risks to the public and workers during implementation of the source area excavation and incineration (2 to 2.5 years duration) however, these short-term risks can be reduced by application of engineering controls and, once the incineration is completed, the risks from the source area are eliminated. Alternative 6 does not reduce toxicity or volume of the source area and does not provide long-term protectiveness of human health and the environment because the source area will not be removed. Slurry walls have an expected lifetime of 30 years. If a breach of the slurry wall occurs, ground-water monitoring should detect it. However, as long as source materials are allowed to remain within the water table the chance for migration exists. Numerous reconstructions of the containment system may need to be implemented before the total risk is gone. With the selected remedy, once the source area is removed no additional releases of contamination could occur and the direct contact of source materials with the water table is removed. Only contamination which has already migrated from the source area would need to be collected and treated. And, once the source area is removed and incinerated and ground water risk objectives are met, long term monitoring will not be necessary.

Comment: Onsite incineration will require a high volume flow of water for operation. The discussion of incineration does not identify the source or discuss the availability of this water and the associated cost. Ready availability of this volume of water is questioned since discussion of a soil bentonite slurry wall barrier on page 3-55 indicates that water for construction of the slurry wall would have to be obtained from an unspecified off site location. Availability of the larger volume of water for onsite incineration is thus questionable. [B.21]

U.S. EPA Response:

The volume of water required for incineration cannot be determined until the incinerator is selected during the remedial design. The source of water
It is estimated that there are two source areas with a combined volume of 25,000 to 35,000 cubic yards. Supporting documentation for this conclusion was not found. [8.19]

U.S. EPA Response:

The estimated volume of the source area is discussed above. The identification of two possible source areas was determined based on the test pit investigation. The test pit investigation indicated the presence of two separate source areas which are divided by undisturbed soils. However, this will not be confirmed until excavation is in progress.

Drums

Comment: In the FS report, several references to the RI report are made (pp. ES-3, 1-31, 2-5, etc.) stating "that 2,300-5,000 drums may be buried within the suspected drum boundary" inferred from the aforementioned fill volumes. No documentation correlating either the geophysical results to the fill volumes, or the geophysical results to a total number of buried drums was presented in the RI or FS reports. Again, the calculations and assumptions used to obtain this estimate should be provided. Also, the geophysical survey detects metal pieces, rods, etc., which might be present in the soil. These might influence the results to a great extent and might have erroneously been interpreted as indicating the presence of drums. The report makes no mention of such possible errors. [8.20]

U.S. EPA Response:

The number of drums estimated to be in the source area is based on discussions with the transporter. The transporter indicated that from the mid-60s to the mid-70s, he may have transported over 6000 drums of liquid to the site. The test pit investigation indicated that fewer drums may be in the source area. For estimating purposes, a range of 2500 to 5000 drums was selected. Until the landfill is excavated, the exact number of drums can not be determined.

Remedial Alternatives

Comment: Table ES-1 indicates that alternative 6, source area containment, treatment of ground water outside contaminated area, complies with all ARARS and is protective for soils and ground water. It also indicates that it is easily implemented with proven technologies. Table ES-1 indicates that alternatives 2 and 6 have minimal risk during remediation, alternatives 4 and 8 have moderate risk and alternatives 3, 5, 7, and 9 have high risk. Alternative 6 also is indicated as requiring relatively short time to implement. Of the alternatives developed in the FS, Alternative 6 appears to have distinct advantages during the remediation when the risk for release to
needed for incineration will be determined during the design phase of the remedial action.

Comment: During screening of remedial technologies all solidification/stabilization techniques except in situ vitrification were eliminated. It appears that one technology was not considered and that other technologies were eliminated without adequate test data. The technology now exists to use large diameter augers through which a stabilization fixation slurry is pumped. The auger mixes the slurry with the waste material and contaminated soils, drums would be ruptured and the contents fixed within the slurry. This technology is not subject to the same limitations as the other solidification/stabilization technologies listed on Figure 2-1. In addition, other stabilization techniques were eliminated based on questions of effectiveness and possible leaching. Bench scale tests should have been completed prior to elimination to determine if effective treatment mixes are available. In addition, excavation and offsite incineration of intact drums combined with stabilization of the soil and ruptured drums should be considered. It does not appear that these alternatives were considered.

[B.24]

U.S. EPA Response:

The solidification technologies suggested are not proven technologies and were eliminated from further consideration for that reason.

Comment: Neither the description of each alternative nor the cost estimate table for each alternative present adequate detail to determine if all essential elements of the alternative have been considered and to determine if the cost estimates are consistent and accurate. [B.25]

U.S. EPA Response:

The estimates list the elements that comprise the total costs. The costs estimates were used to compare alternatives and have an expected accuracy between -30 to +50 percent, as discussed in the FS report, p. 4-2.

Incineration

Comment: The area allocated for incineration in each onsite incineration option as illustrated on the referenced figures appears to be substantially less than that required by available transportable incinerators with the required ancillary facilities. The area allocated is only about 250 feet by 300 feet. A much larger area is required. [B.21]
U.S. EPA Response:

Preliminary information from a mobile incinerator supplier indicated that the space selected was adequate. The actual space needs will be determined after a mobile incinerator is chosen during the remedial design. Adequate space is available on site to expand.

Comment: The FS report states "The ash content of the contaminated soil is assumed to be 70 percent; the water content is assumed to be 20 percent and the heating value is assumed to be 2,000 Btu per pound." The RI and FS reports do not present laboratory test data which are commonly used to provide data for evaluating incineration suitability and characteristics of incinerator ash. Tests for Btu content, total chlorine content, percent of ash, and NO are commonly used for evaluating suitability for incineration and should be determined prior to selecting the remedial alternative. [B,21]

U.S. EPA Response:

Incineration is suitable for materials in the landfill because the contaminants of concern present in the soils and drums are easily incinerated. Discussions with vendors of mobile incinerators verified that based on soil conditions and level of contaminants present in the soils that incineration is easily implemented. Further tests will be performed as part of the remedial design to optimize incinerator operation, as discussed in the FS report. Incineration of soils and liquid is a proven technology.

Comment: The FS report states "the volume of ash remaining is estimated to be 18,000 to 21,000 cubic yards". This represents 30% reduction in volume from the in situ volume. Since the bulk of material to be incinerated is soil with low organic content it is likely that the volume reduction will be much less than that presented and in fact may be very small. In addition, the excavated soil will undergo expansion or "fluff" resulting in a volume increase relative to in situ volume. If the ash requires treatment prior to disposal this will further increase the volume. [B,22]

U.S. EPA Response:

The incinerator ash will be disposed back into the excavated area as long as it is able to be delisted. If the reduction of volume is less than 30%, there will still be plenty of space to dispose the ash. The actual volume of materials in the landfill and soils/ash remaining after incineration can only be determined after excavation and incineration.

Comment: The FS report states "In addition to the ash remaining after incineration, residuals from air pollution control would probably consist of sludge and wastewater requiring treatment if a wet design is used and solid fly ash if a dry design is used." The issue of disposal of air pollution
control wastes should be evaluated in much greater detail prior to selection of a remedial option as this can have significant environmental and cost impact on an incineration alternative. [B.22]

No test results for total chlorine content of the contaminated material were presented. This is a critical parameter for evaluation of incineration alternatives. Since the primary contaminants include chlorinated organics the air pollution control wastes can be expected to contain significant chloride content. [B.22]

Treatment of wet scrubber waste water to remove chloride is generally not feasible and is expensive, resulting in either a concentrated brine or a high salt content solid both requiring offsite disposal. Similarly, dry scrubber systems, result in a high salt content solid. Stabilization of such solids with fly ash is likely to result in significant leaching of chloride to ground water and surface water. Disposal onsite of wastes from either wet or dry design air pollution control systems would most likely result in significant chloride pollution of Conneaut Creek potentially with considerable environmental damage. Testing of total chlorine content, calculation of chlorine mass balances for incineration air pollution control systems and evaluation of associated costs and environmental impact should be undertaken before selecting a remedial option. [B.22]

U.S. EPA Response:

The use of wet or dry scrubbers will be addressed during the remedial design. Discussions with vendors of mobil incinerators indicated a preference for dry scrubbers.

Costs associated with the air pollution control facilities are included in the capital costs associated with incineration. The actual costs are dependant on the incinerator selected.

No tests were run on total chlorine because a representative sample of materials in the landfill was not able to be obtained. As discussed in the FS report, prior to final design a test burn will be run.

Comment: With reference to incinerator ash the FS states "if delisting is not possible, the material would need to be disposed of in a RCRA landfill as discussed in alternatives E and F." Construction and operation of onsite RCRA landfill would require long term maintenance. If the waste is successfully delisted it would still remain a nonhazardous waste. Backfilling of the ash was not discussed with respect to compliance with State requirements for landfilling nonhazardous waste. [B.23]

U.S. EPA Response:

The selected remedy assumes that the characterization of the ash will allow the State of Ohio to waive their solid waste regulation regarding the final
deposition of the ash. The State of Ohio has agreed to consider such a waiver when analysis of the ash is available.

Excavation

Comment: Mechanical excavation is expected to extend about 30 feet deep for all source control alternatives except containment. The contaminated material occurs within 50 feet of a very steep slope leading to Conneaut Creek. No strength data was presented in the RI/FS reports for the soil. However, stability of the excavation at such depths is uncertain. An outward failure with release of contaminated material to Conneaut Creek is a risk which has not been addressed in the RI/FS reports. Such a failure could result in far greater risk to public health and the environment than is presented by the site in its present condition. Strength data for the soil should be obtained and a geotechnical evaluation of the risk associated with excavation should be undertaken prior to selection of a remedial alternative. [B.23]

U.S. EPA Response:

Any strength data needed prior to excavation will be generated during the remedial design. During test pit excavation, the walls were extremely stable. However, if the southern wall of the landfill is not stable, the slope soils could easily be removed and stored during excavation and replaced after excavation is completed.

Comment: The FS report states "The conditions at the Big D site are favorable because the depth of drums and the drums are expected to be in generally good condition based on the results of the test pit excavation." The RI report (page 5 of Appendix I) however, states that "Over half the drums observed were either partially crushed or ruptured." The above conclusion concerning the excavation of drums is inconsistent with the test pit results presented in the RI. It should be noted that excavation of the drums would be expected to result in rupture of many of the drums which may be currently intact. [B.24]

U.S. EPA Response:

The drums observed during the test pit excavation, which were not ruptured, were in good physical condition. Excavation of these drums should not result in rupture. If drums in a less stable condition do rupture during excavation, the contents of the drum and newly contaminated soils would be collected and incinerated.
General

Comment: Instead of undertaking the dye study during the sampling period, the dye study should have been completed first so that the location of the stations could be based on the hydrodynamic flow of the creek, rather than the approach that was used where the dye study revealed that the siting of the stations may have resulted in the collection of samples in areas not representative of the flow of the creek. [B,17]

U.S. EPA Response:

The dye study was done prior to collecting samples during the second round. It would have been better to perform the dye study prior to the first round, however the data collected is still valid.

Comment: As uptake and absorption are extremely important parameters in the movement of both inorganic and organic pollutants, and as both pH and organic carbon content of soil have a major influence on the chemodynamics of the compounds, these parameters should have been measured in order to better assess the movement of these compounds in the environment. [B,17]

U.S. EPA Response:

This information would have been useful, however it was not necessary to the purpose of the RI and FS. The determination of the nature and extent of contamination and the risks posed to public health and the environment were not affected by the lack of this data.

Comment: A reference to Table 6-16 in the RI report for the ambient water quality criteria was made. No such table exists in the report. Rather, the data was taken from Table 6-9. The source of the AWQC for lead was not referenced. [B,19]

U.S. EPA Response:

Table 6-9 was the correct reference. The reference for lead is listed on page 6-52 of the RI report.
SECTION 3: SUMMARY OF OHIO ENVIRONMENTAL PROTECTION AGENCY COMMENTS AND U.S. EPA RESPONSES

Comment: Alternative 9 requires that delisted ash will be backfilled into the source material excavation. The delisted ash is considered a solid waste under Ohio law and ORC 3734-02-G provides a method for the Director of Ohio EPA to determine if disposal at the Big D site would not pose any adverse effects to public health or the environment. The ROD should indicate that OEPA Solid Waste regulations are ARARs for ash disposal on-site and authority to exempt any substantive requirements of those regulations rests with the OEPA. [F.]

U.S. EPA Response:

The ROD identifies all ARARs submitted by the State of Ohio which apply to the clean-up at the site. The ROD also identifies that a request for a waiver of Ohio’s Solid Waste Regulations has been forwarded to the Ohio EPA.

Comment: The FS report and the proposed plan should have considered the possibility that the incinerator ash might not meet the substantive requirements of RCRA delisting. During the remedial design, determination will be made about the treatability of contaminated source materials. If incineration does not produce a delistable ash then the ash material will have to be handled as a hazardous waste. Alternative 7 might be retained or considered as a backup for this eventuality. [F.]

U.S. EPA Response:

If the ash is not delistable, alternative 7, which entails placing the ash back in the landfill and vitrifying the ash and contaminated soils, could not be implemented, either. If the ash is not delistable then the State of Ohio’s Solid Waste Regulations would require it be disposed of as a RCRA hazardous waste. Vitrification is simply another containment option and will not meet the Ohio’s solid waste ARARs any more than the selected remedy will.

Comment: As noted in section 7.2 of the RI report, and as we discussed in the past, the extent of off-site migration of ground water contamination cannot be verified without further sampling of ground water. The ROD should address specific activities that will occur during a pre-design project. What is the extent of the study that is needed to adequately define the extent of ground-water contamination. The ROD should include objectives and suggest methods for determining the complete extent of off-site ground-water contamination and for characterizing the hydrogeology necessary in order to design the extraction systems. Any further investigation of the extent of ground-water contamination should also be designed to address the concerns of local residents that were presented during the August 8, 1989 public meeting. Ohio EPA will provide the information that our Division of Groundwater has obtained about water usage in that area and any well sample results that you do
not already have. [F.]

U.S. EPA Response:

This has been added to the Record of Decision.

Comment: In section 3.3 of the FS report, process options for the treatment of ground water are evaluated based on effluent goals from Table 3.1. The substantive requirements of the National Pollutant Discharge Elimination System program as administered by the Ohio EPA Division of Water Pollution Control will ultimately determine the choice of treatment methodologies designed and implemented at this site. While risk based objectives are used as goals for clean-up of a contaminated site, the concentration limits for a discharge are set by the NPDES program based on the water quality of the receiving stream, flow rates, and other factors including implementation of Best Available Technology. It is likely that detailed treatability studies and design review will show that process options in addition to GAC will be required to adequately treat the ground water prior to discharge. [F.]

U.S. EPA Response:

If it is determined that further ground water treatment is necessary prior to discharge, it will be implemented, and has been noted in the ROD.

Comment: The ROD should indicate that cleanup goals will be based on cumulative risks. Though multiple exposure pathways did not pose significant risks in the RI it is possible that other risks will be documented during pre-design or later phases of the project. Any final clean-up standards should be based on risks calculated from cumulative exposure from all possible exposure routes. [F.]

U.S. EPA Response:

The ROD states that clean-up goals are based on cumulative risks.

BIGRES.TWO/2
9/27/89
null
Norman Thorpe
3709 S. Ridge Rd.
Kingsville, Ohio 44045
216 - 224-0350

We are directly south of the dump, and want our well water tested. No one has ever tested it.
South Ridge has no city water.
Spelt to contact date

Concerted before

Kingsbridge 04
3740 Club Rd
Tim Bardo
Dear sir and madam,

Thank you for your inquiry. After careful consideration of the information provided, we regret to inform you that the production of the desired product has been interrupted due to unforeseen circumstances. We anticipate a delay in production. We regret any inconvenience this may cause.

Question: If so in the format of

Phone: 310-394-0350

Address: 3106 S. Ridge Rd.

Name: Mrs. Norman Thorpe
COMMENTS ON THE RI/FS REPORTS
BIG D CAMPGROUND SUPERFUND SITE

To:
U.S. Environmental Protection Agency - Region 5

Woodward-Clyde Consultants
Consulting Engineers, Geologists, and Environmental Scientists
2522 O'Neal Lane, Baton Rouge, LA 70896
Ms. Gina Weber
Office of Public Affairs (SPA)
U.S. Environmental Protection Agency
230 South Dearborn Street
Chicago, Illinois 60604

Attention: 5HS-11

Re: Big D Campground Superfund Site
Comments on the RI/FS Reports

Dear Ms. Weber:

There are significant comments on the Remedial Investigation (RI) report and serious concerns on the validity of the data used, various assumptions that were made and conclusions arrived at. The Feasibility Study (FS) report is very inadequate in that it did not evaluate all feasible alternates and for the alternates selected for further consideration, complete evaluation was not done.

Specific comments referring to individual pages in the RI/FS report prepared by Woodward-Clyde Consultants are attached hereafter. We want to bring to your attention the following major technical flaws in the RI/FS reports:

1. Ground water flow and quality characterization is based on six water elevation and two sampling temporal data points over a period of only 4 months and is completely inadequate.
Review of the two ground water quality data obtained from the deep wells for RI/FS strongly suggest that contamination may have been introduced by drilling during installation of the wells.

The data do not support the conclusion reached regarding a definite northward movement of ground water flow. The results of the groundwater model and assumptions made therein are in serious question as a result.

Various assumptions used on the Risk Assessment are highly questionable.

No sound scientific or technical basis for the estimate on number of drums at the site has been presented. We do not believe that the number can be anywhere near 2500 or 5000 as stated in the RI/FS reports.

We question the design and location of the groundwater recovery trenches and more importantly the very need for the recovery trenches.

On source control, some of the recommended alternates have not been fully evaluated. For example: the geotechnical stability of the very steep slope leading to Conneaut Creek - while excavating up to 30 feet is very questionable and could endanger the creek severely and could pose serious construction safety problems. Additionally, the pros and cons of on-site incineration were not studied in sufficient detail. To be specific, on-site incineration could lead to higher risk to the environment and public health than even a no action alternate.

Certain very viable alternates such as in-situ solidification and stabilization were not considered.

Olin would be most happy to discuss these comments at your earliest convenience. If you have any questions, please call me at 615/336-4395.

Very truly yours,

Verrill M. Norwood, Jr.

Olin would be most happy to discuss these comments at your earliest convenience. If you have any questions, please call me at 615/336-4395.

Very truly yours,

Verrill M. Norwood, Jr.

cc: Ms. Janice Bartlett
COMMENTS ON BIG D CAMPGROUND, KINGSVILLE, OHIO
REMEDIAL INVESTIGATION - FEASIBILITY STUDIES (RI/FS)

INTRODUCTION

Detailed below are Woodward-Clyde Consultants' comments on Olin Chemicals' Big D site at Kingsville, Ohio. These comments have been made following a thorough review of the following documents:

(i) U.S. EPA - Hazardous Site Control Division
 Contract No. 68-01-7251
 Final RI Report, Big D Campground, Kingsville, Ohio
 June 1989; WA 48-5LB1.1 Volumes I and II

(ii) U.S. EPA - Region V (Waste Management Division)
 Contract No. 68-W8-0084
 Final FS Report, Big D Campground, Kingsville, Ohio - June 1989;
 WA 01-5LB1

COMMENTS ON THE REMEDIAL INVESTIGATION REPORT:

Remedial Investigation

Page ES-4: The Executive Summary of the RI states that "Organic Compounds were detected in samples from most deep wells at low but significant concentrations. The contamination is probably the result of vertical migration of contaminants through the hard grey clay unit at localized areas or possibly the result of past site activities."
The chemical data presented in the RI for ground water from the confined bedrock aquifer raises serious concerns with respect to the validity of the RI data:

1. Validity of the ground water samples and analyses from the deep wells (those screened in the unit designated the confined bedrock aquifer) is questionable.

2. Significance of the low, inconsistent concentrations detected in the deep aquifer is doubtful.

3. Temporal patterns in the data suggest that the concentrations in ground water from the deep wells may result from residual contamination introduced to this depth by drilling for installation of the monitor wells.

4. Well development was not sufficiently defined and may not have been properly done.

The organic compounds detected (see attached Table 1) in the deep wells are primarily acetone, methylene chloride and chlorobenzene. As noted in Section 4.3.3 of the RI, acetone, methylene chloride, chlorobenzene, and toluene (also detected in some of the deep well samples) and trichlorethylene were detected in some field and/or laboratory blanks up to 305.8 ppb of total VOA's. Acetone was used as a rinse in decontamination of ground water sampling equipment. This is especially troubling since acetone is the compound reported in the highest concentrations and with the greatest frequency in the deep wells.
As stated in Section 4.3.3.3 "Acetone, a common field and laboratory contaminant was the only compound detected during both sample rounds in a single deep well." If acetone is not included, the detected total VOA concentrations in the deep wells exceed 10 ppb only in one sample (34.2 ppb in the first sample from Well 4D). The latest measurement from Well 4D was 0 ppb.

All of the wells were sampled and analyzed on two or three dates. This spanned a period of 4 months and is insufficient to make ground water quality conclusions. The data for repeated samples from any single deep well are inconsistent. For example, subsequent samples resulted in the following total VOA concentrations.

- well 1D0 to 76 ppb
- well 2D1,100 to 118 to 0 ppb
- well 3D628.6 to 48 to 0 ppb
- well 4D 71.2 to 900 to 0 PPB
- well 5D5,922 to 0 ppb
- well 6D430 to 38 ppb

In addition, dedicated sampling equipment should have been used to avoid problems of equipment contamination during sampling. Because of the presence in the blank samples of the same contaminants reported to be present in the samples and the inconsistent results from repeated samplings, the ground water sample and analysis results do not indicate significant concentrations of organics in the deep ground water. Note in the last sampling event, four of the six wells did not report any
detectable VOAs. Even if the sampling and analysis results were not of questionable validity the data would not necessarily demonstrate contamination of the confined bedrock aquifer. The data for total VOAs listed above illustrate a general trend of decreasing concentration with succeeding samplings. This suggests that the detected organic compounds could be the result of contamination from shallower zones that was carried into the deeper aquifer during drilling for installation of the deep monitor wells. Repeated purging and sampling of a well would gradually reduce the constituent concentrations resulting in lower detected concentrations with repeated samplings and perhaps invalidate the conclusion that no deep contamination exists.

The data in Appendix C (see Volume II of the Final RI report), does not indicate the volume of water that was removed from each well during development and during purging for each sampling event. This information is necessary to evaluate the validity of the ground water samples.

APP.A. (See Volume II of Final Remedial Investigation Report)
P. 15

Boreholes 2D, 3D and 4D were advanced 10 to 20 feet deeper than the planned well depth. On attempting to plug the bottom of these boring cement bentonite grout rose in the borehole through the screened interval, Borehole 2D was apparently properly plugged and abandoned and the well was installed in a new borehole adjacent to the first location. Borehole 3-D, however, was drilled out using a core barrel. Borehole 4-D was flushed with water to remove the rout. The adequacy of the measures for wells 3-D and 4-D is questionable and residual
grout in the wells may impact quality of water samples from these wells. The procedure used for the borehole 2-D should also have been used for 3-D and 4-D.
TABLE 1
ORGANIC COMPOUNDS DETECTED IN DEEP WELLS
Concentrations in Parts Per Billion (ppb)

<table>
<thead>
<tr>
<th>Volatiles</th>
<th>Well 1D 1st</th>
<th>Well 1D 2nd</th>
<th>Well 2D 1st</th>
<th>Well 2D 2nd</th>
<th>Well 2D 3rd</th>
<th>Well 3D 1st</th>
<th>Well 3D 2nd</th>
<th>Well 3D 3rd</th>
<th>Well 4D 1st</th>
<th>Well 4D 2nd</th>
<th>Well 4D 3rd</th>
<th>Well 5D 1st</th>
<th>Well 5D 2nd</th>
<th>Well 6D 1st</th>
<th>Well 6D 2nd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorobenzene</td>
<td>8</td>
<td>2J</td>
<td>2.2J</td>
<td>82J</td>
<td></td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td>5.4</td>
<td>11</td>
<td>110J</td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td>1.2J</td>
<td></td>
</tr>
<tr>
<td>Toluene</td>
<td>74</td>
<td>1100</td>
<td>118</td>
<td>620</td>
<td>48</td>
<td>26</td>
<td>900</td>
<td>0</td>
<td>5700</td>
<td>430</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetone</td>
<td>2J</td>
<td>1100</td>
<td>118</td>
<td>0</td>
<td>628.6</td>
<td>48</td>
<td>71.2</td>
<td>900</td>
<td>0</td>
<td>5922</td>
<td>430</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Butanone</td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td>Total Vols</td>
<td>0</td>
<td>76</td>
<td>1100</td>
<td>118</td>
<td>0</td>
<td>628.6</td>
<td>48</td>
<td>71.2</td>
<td>900</td>
<td>0</td>
<td>5922</td>
<td>430</td>
<td>38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acid Ext.</td>
<td></td>
</tr>
<tr>
<td>Phenol</td>
<td></td>
</tr>
<tr>
<td>Total Acid Ext.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

J = Estimated value. Used when estimating a concentration for tentatively identified compounds where a 1:1 response factor is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria and the result is less than the specified detection limit, but greater than zero.
ORGANIC COMPOUNDS DETECTED IN DEEP WELLS

Concentrations in Parts Per Billion (ppb)

<table>
<thead>
<tr>
<th>Sampling</th>
<th>Well 1D</th>
<th>Well 2D</th>
<th>Well 3D</th>
<th>Well 4D</th>
<th>Well 5D</th>
<th>Well 6D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Base/Neut. Ext.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isophorone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bis (2-ethylhexyl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>phthlate</td>
<td>2.7</td>
<td>J</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylphthalate</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Total B/N ext</td>
<td>2.7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

J = Estimated value. Used when estimating a concentration for tentatively identified compounds where a 1:1 response factor is assumed or when the mass spectral data indicates the presence of a compound that meets the identification criteria and the result is less than the specified detection limit, but greater than zero.
(a) Northward movement of the shallow ground water is stated as fact. This is not documented and is not justified by the data in the RI. Table 3-1 (p. 3-16) shows some higher ground water elevations north of wells IS, 5S and 4S. For example, water levels in 3S, the northern most monitor well, and RW3 (a residential well located about 600 feet north of the reported ground water divide at the site) were 712.90 feet and 719.83 feet, respectively, on September 26, 1987 and higher than the wells immediately to the south. In fact, the ground water elevation was higher in the northernmost shallow monitor well, MW-3S, than in wells to the south of it on four of the six dates on which ground water elevation measurements were reported. Ground water elevation in RW3 was 720.07 feet msl on May 16, 1987, higher than monitor wells located to the south. Furthermore, it is difficult to predict a contour of 714 feet as shown in Figure 3-3 (p. 3-8) with the existing ground water elevation data. This contour was drawn considerably north of well 3S, the northern most monitor well and the northern most data point. Also, the water level around the 712 feet contour line in Figure 3-4 (p.3-9) can be interpreted in other ways. For instance, an east-west trough could exist instead of a closed depression. In addition, the data presented in the RI is not adequate to verify that the shallow aquifer is continuous to the north of the site. Additional measuring points are necessary to define the direction of the ground water movement from the site.

(b) Paragraph 1 states that since the unusually low water table elevations in the fall do not represent normal site conditions, ground water flow systems have been discussed using May 1987 data. If this is the case, ground water flow to the north would be primarily uni-directional as indicated by Figure 3-3. This is contradictory to the two-lobed contaminant plume used in the analytical model and depicted in Figure
4-6 (p.4-19). The pattern of a two-lobed plume could be simulated under the initial condition of a two-directional ground water flow as depicted in Figure 3-4 (p.3-9). With the available data, the conclusions arrived at on p. 3-7 and p. 4-18 regarding the northward movement and the two-lobed plume are not substantiated. It should be noted that seasonal fluctuations in ground water elevation occur even in normal precipitation years and the measurements during the RI may reflect normal trends although the actual elevations would vary from year to year. It is possible that the northern portion of the site exhibits a seasonal reversal of flow direction.

Page 4-12: The RI states that well RW-3 "is probably not screened in the same water bearing unit as the monitoring wells at the Big D site. Well construction, recharge rates, and static water level indicate this well receives water from a localized perched water table zone." The basis for this conclusion is not documented in the RI. The data presented in the RI (Table 1 of Appendix C) does not distinguish the aquifer at RW-3 from that at RW-1, RW-2, RW-4 and the onsite monitor wells completed in the water table. Table 1 of Appendix C (see Volume II of Final RI Report) lists RW-3, RW-1, RW-2 and RW-4 as screened in the overburden (assumed based on discussions with owners). No hydrogeologic analysis or other data is presented to indicate that RW-3 is not screened in the same aquifer as the other residential wells or the shallow onsite monitor wells. The ground water elevation in RW-3 is higher than in the northern most shallow onsite monitor wells and this may reflect a ground water elevation surface for the water table different from that assumed in the RI rather than necessarily indicating a different aquifer. It should be noted that the RI also indicates that the water table aquifer onsite is a perched aquifer in the overburden.
One of the stated reasons for the two-lobed contaminant plume is surface water recharge from the drainage swale at the northern end of the site. If the drainage swale is a significant source of recharge, the local ground water flow would be expected to be southward from the south side of the swale and northward from the north side of the swale (i.e. a ground water divide). This is contradictory to the RI's stated northward direction of the ground water movement.

Residential well RW2, located at 3700 Creek Road, does not show any chlorobenzene contamination or other contamination believed to come from the site. However, Figure 4-6 shows that the computer simulation predicts that there is about 3mg/l of chlorobenzene in the vicinity of RW2. The detection limit for chlorobenzene is .005mg/l. The accuracy of the transport model is implied in the RI to be about one order of magnitude, but in this case is in error by at least a factor of 600. The assumptions on which the model is based may not be valid.

Two background soil samples were collected, both from the same location. The RI then states that "As shown in Table 4-1 the highest borehole concentrations for all compounds except silver exceeded the concentrations detected in the two background samples. The highest concentrations of each inorganic compound detected in the test pits exceeded the concentrations in both background samples with the exception of antimony, arsenic, beryllium, cobalt, iron, cyanide, selenium, thallium and vanadium." These are true statements, however, it should be noted that this does not necessarily indicate elevated concentrations in the soil borings and test pits relative to the two background samples. Most of the inorganic constituents analyzed are present in varying concentrations in soil samples as a result of natural processes. The naturally occurring concentrations will vary from
location to location and will exhibit a statistically distributed range of values which is dependent on the number of samples of the total population of samples which have been analyzed. That is, if the range for a very small number of samples is compared to the highest value observed from a much greater number of samples collected from the same population, it is expected that some values will exceed the range of the small number of samples. Since many more samples were analyzed from boreholes and test pits than from background locations, it should be expected that some values will exceed the range exhibited by the background samples. Note that the lowest concentrations of the borehole and test pit samples for the inorganic constituents are also lower than or equal to (for not detected) the lowest values for the two background samples.

The comparisons used and conclusions reached are statistically invalid.

p. 4-20:

Soil gas concentration contours have not been provided to help evaluate the validity of the estimated extent of the ground water contamination plume, as shown in Figure 4-6 (p. 4-19). Further verification of the results is necessary.

Appendix H: (1)
(see Volume II of Final RI Report)

In the modeling of the plume, it has been assumed that the (water table aquifer is infinite in extent. This assumption is contradictory to the actual physical characteristics. In fact, data were not presented that verify that the aquifer is continuous in the area included in the model. Also the model did not account for the vertical recharge from the surface.
The Princeton Model is limited to modeling a single source with a single ground water flow direction. The study used a combination of results from multiple model runs as a weighted average of concentration with respect to discharges from the two source areas. Theoretically, since it is not based on solute mass balance or mass conservation, the weighted average concentration may deviate remarkably from the true value at each location. It is, therefore, essential to verify the results by running other models (analytical or numerical) and comparing the results. No indication of model verification was submitted.

In light of the above, we suggest that the following be further considered:

1. Obtain water level data for additional dates and provide more data points further north.

2. Utilize another analytical model to verify the Princeton Model's results with the same given assumptions;

3. After adequate data is obtained, refine the assumptions and use other analytical or numerical models to obtain results based on more realistic physical conditions. A numerical model or a combination of analytical and numerical models is highly recommended since it can better simulate the subsurface conditions at the Big D site;

4. Sensitivity analysis of the responses of ground water flow and contaminant transport with respect to changes in the hydrogeological parameters is essential since the input values are based on assumed values and may differ very significantly
from the actual conditions. No sensitivity analysis is reported in the RI.

General comment on estimated extent of shallow ground water contamination.

The estimated extent of shallow ground water contamination to the north of the site is based solely on the predictions from the analytical model and actual ground water data are limited to the southern edge of the area modeled. Contradictions exist between the model and the available data and numerous unverified assumptions are present in the analytical model and the estimation of contaminant extent. Evaluation of the extent of contamination requires collection of actual hydrogeologic and water chemical data within the area modeled. The actual extent may vary significantly from what has been predicted in the RI, as is indicated by the available data for residential wells.

Table 1 of Appendix H
(See Volume II of Final RI Report)

Table 1 lists the ground water velocity used in the model as 3.64×10^5 cm/sec. This is equivalent to about 1,030,000 feet per day. Presumably this is a typographical error. What ground water velocity was used?

Tables 6-2b, 6-3b, 6-4b, 6-5b, 6-6b, 6-7b, 6-8b:

The upperbound excess lifetime cancer risk value mathematically should be reported with three significant digits to obtain more uniform calculation results.

Selection of soil ingestion rates - The soil ingestion values presented in the EPA Superfund Exposure Assessment Manual (SEAM) p. 168,
Table A-5 are presented by age group and are more accurate. The information in this reference also provides time periods for various ingestion rates making the assumption of years of soil ingestion unnecessary.

Direct contact with contaminated soils/Extent of exposure ...this scenario assumes that future direct contact with soils will involve soil up to 8 feet below the ground surface. The basis of this assumption (depth of 8 feet rather than surface soil) needs to be presented. Use of surface soil would probably result in significantly lower exposure. The exposure via this pathway is zero.

The potential dermal exposure is estimated to be 1 mg soil/cm2 body area. This estimate is high, a value of 0.6 mg soil/cm2 body area is more accurate (Lepow, 1975). The value of 1 mg soil/cm2 overestimates the health risk and this should be stated. The Superfund Public Health Evaluation Manual (SPHEM) states that the uncertainties of each assumption made during the risk evaluation process and the resulting over or underestimation of health risk must be clarified. Evaluation of the impacts of assumptions was not made for any exposure assumptions.\(^1\)

The basis for the selection and use of an additional carcinogenic potency factor for calculating dermal exposures was not stated. The impact of the use of these factors in addition to the use of factors developed for ingestion of contaminants on the overall risk estimate was not discussed.

It is stated that the sampling results for the residential wells did not reveal any inorganic or organic contaminants that could be attributed to releases from the Big D site. It should have been stated that for incomplete exposure pathways there is no actual risk. (See Reference SPHEM, Page 36, first column, second paragraph). There is no potential risk associated with the site ground water at this time due to an incomplete exposure pathway. Risk is overestimated because it is assumed that the pathway is complete at this point. The potential for future risk exists only if a production well is placed in a location completing the exposure pathway.

It should also be noted that in comparing production well contaminant concentrations with site monitoring well concentrations in the same aquifer, that lower concentrations may occur in dynamic systems such as production wells in comparison to stagnant systems such as monitoring wells. The use of monitoring well data applied to production well consumption may overstate the health risk.

When referring to risk, it should be clarified that the future is based on a period of 70 years for risk assessment purposes, not an infinite time period. It is stated that both acute and chronic exposures for the potential ingestion of ground water were evaluated. Only chronic hazard index values can be found on the RI.

For infrequently found contaminants, geometric mean concentrations were not calculated and the contaminant was not evaluated under probable case conditions. In order to evaluate these contaminants under probable case conditions, the geometric mean can be calculated utilizing a concentration equivalent to one-half the detection limit for
that specific contaminant when there are "non-detectable" levels. This approach more accurately estimates the actual or probable exposure.

It is stated that extrapolations from animal studies do not address human-animal differences in absorption. This is not true - all effect levels obtained from chronic animal studies are multiplied by a safety factor of 10 to account for interspecies variation.

It is also stated that the ACI and CPF calculations assume that the human body absorbs 100% of the contaminant, the same extent as an experimental animal. For most compounds this is not true.

The reasons for excluding the percent contaminant absorbed in equations 6-1 and 6-2 are not satisfactory. However, by assuming 100% is absorbed, the estimated dose is higher and the calculated risks are more conservative. Also, it was stated elsewhere that 1% inorganic and 5% organic dermal exposure assumptions would be used. These percentages are used in eq. 6-1 and 6-2 in Appendix H.

The BCF values quoted for chlorobenzene range from 10 to 4185. A value of 465 was selected and the basis for this selection is not stated. A more conservative approach would be to use the highest value. Recalculations using BCF of 4185 gives a HI of 0.32 which is still in the acceptable range.

Extent of exposure - Estimated doses and HI should have been calculated for barium, lead and beryllium.
The estimated dose for chlorobenzene is 9.5×10^{-1} not 9.21×10^{-1} μg/kg. (See page 6-16) The HI is 3.5×10^{-2} not 3.4×10^{-2}.

Appendix

exposure dose = 10,230 mg/kg should be 10.230 mg/kg or 10,230 μg/kg

Location of sampling stations based on flow of dye

Instead of undertaking the dye study during the sampling period, the dye study should have been completed first so that the location of the stations could be based on the hydrodynamic flow of the creek, rather than the approach that was used where the dye study was performed after the stations had been sited. The dye study revealed that the siting of the stations may have resulted in the collection of samples in areas not representative of the flow of the creek.

Measurement and documentation of pH in the soils and water samples.

As uptake and absorption are extremely important parameters in the movement of both inorganic and organic pollutants, and as both pH and organic carbon content of the soil have a major influence on the chemodynamics of the compounds, these parameters should have been measured in order to better assess the movement of these compounds in the environment.
A discrepancy exists in the average body surface area of a child used in the risk assessment. Although EPA (1985) stated that the average surface is 1200 cm², the 1988 Superfund Assessment Manual (Page 127) quotes that the dermal area of a child is 9400 cm².

The derivations and calculations of the carcinogenic potency factors and noncarcinogenic acceptable daily intake values should be discussed in more detail. In addition, a discussion of the safety factors included in the calculations should be included. This information is necessary to determine the validity of the conclusions.

Two of the ADI values i.e. those for barium and beryllium which were used in the study differed from the values quoted in the 1986 EPA Exposure Manual. If some other source was used, it should be referenced. In the case of barium, the value differed by 11% but in the case of beryllium, the figure used, 5.00E-03, was one order of magnitude less sensitive than the value of 5.00E-04 quoted in the 1986 EPA manual. In the text it was inferred that a 1987 revision of the Toxicity
Woodward-Clyde Consultants

data was the source of some of the ADI values. A full reference to this manual was not made as a footnote to the appropriate tables.

p. 6-57

Source of ambient water quality criteria.

A reference to Table 6-16 for the ambient water quality criteria was made. No such table exists in the report. Rather the data was taken from Table 6-9. The source of the AWQC for lead was not referenced.

Geophysics

(1) On page 4-3 of the RI report (Vol.1) landfill volumes are "estimated from the geophysical survey to be 35,000-52,000 cubic yards." There is no discussion upon which that statement is based. Later, on the same page, is the statement "based on the results of the test pit excavation the estimated volume of contaminated fill is 25,000 to 35,000 cubic yards." Were the fill estimates actually made from conversations with the transporter, from the geophysics, or from the test pits? It is not clear. The actual calculations and assumptions used should be presented.

(2) On page 7-1 of the Summary of Conclusions of the RI report (Vol.1), the statement is made "Based on the geophysical survey and the test pit excavation results, it is estimated that there are two source areas with a combined volume of 25,000 to 35,000 cubic yards." Again, supporting documentation for this conclusion was not found.
In the FS report, several references to the RI report are made (pp. ES-3, 1-31, 2-5, etc.) stating "that 2,500-5,000 drums may be buried within the suspected drum boundary" inferred from the aforementioned fill volumes. No documentation correlating either the geophysical results to the fill volumes, or the geophysical results to a total number of buried drums was presented in the RI or FS reports. Again, the calculations and assumptions used to obtain this estimate should be provided. Also, the geophysical survey detects metal pieces, rods, etc., which might be present in the soil. These might influence the results to a great extent and might have erroneously been interpreted as indicating the presence of drums. The report makes no mention of such possible errors.

Comments On Feasibility Study (FS) Report

Table ES-1

Table ES-1 indicates that alternative 6, source area containment, treatment of ground water outside contaminated area, complies with all ARARS and is protective for soils and ground water. It also indicates that it is easily implemented with proven technologies. Table ES-1 indicates that alternatives 2 and 6 have minimal risk during remediation, alternatives 4 and 8 have moderate risk and alternatives 3, 5, 7, and 9 have high risk. Alternative 6 also is indicated as requiring relatively short time to implement. Of the alternatives developed in the FS, Alternative 6 appears to have distinct advantages during the remediation when the risk for release to the air of relatively high concentrations of contaminants is much lower than for other alternatives. The only disadvantage listed for Alternative 6 relative to some other alternatives is that the long term risk (presumably of release of slow moving contaminants to ground water) is expected to be higher. Such releases
can be detected by monitoring and since the ground water moves very slowly, allows considerable time for corrective measures before human exposure would occur. The short term risk of exposure to relatively high concentrations from fast moving air releases during alternatives requiring extensive excavation allows little time for response and appears to represent the greater risk to human health.

2-23 to 2-36, 3-35 to 3-37

Onsite incineration will require a high volume flow of water for operation. The discussion of incineration does not identify the source or discuss the availability of this water and the associated cost. Ready availability of this volume of water is questioned since discussion of a soil bentonite slurry wall barrier on page 3-55 indicates that water for construction of the slurry wall would have to be obtained from an unspecified offsite location. Availability of the larger volume of water for onsite incineration is thus questionable.

Figs. 3-7, 3-8 and 3-9

The area allocated for incineration in each onsite incineration option as illustrated on the referenced figures appears to be substantially less than that required by available transportable incinerators with the required ancillary facilities. The area allocated is only about 250 feet by 300 feet. A much larger area is required.

P 3-37

The FS states "The ash content of the contaminated soil is assumed to be 70 percent; the water content is assumed to be 20 percent and the heating value is assumed to be 2,000 Btu per pound." The RI and FS do not present laboratory test data which are commonly used to provide data for evaluating incineration suitability and characteristics of incinerator ash. Tests for Btu content, total chlorine content, percent
ash, and NO\textsubscript{x} are commonly used for evaluating suitability for incineration and should be determined prior to selecting the remedial alternative.

The FS states "the volume of ash remaining is estimated to be 18,000 to 21,000 cubic yards". This represents a 30\% reduction in volume from the in situ volume. Since the bulk of the material to be incinerated is soil with low organic content it is likely that the volume reduction will be much less than that presented and in fact may be very small. In addition, the excavated soil will undergo expansion or "fluff" resulting in a volume increase relative to in situ volume. If the ash requires treatment prior to disposal this will further increase the volume.

The FS states "In addition to the ash remaining after incineration, residuals from air pollution control would probably consist of sludge and wastewater requiring treatment if a wet design is used and solid fly ash if a dry design is used." The issue of disposal of air pollution control wastes should be evaluated in much greater detail prior to selection of a remedial option as this can have significant environmental and cost impact on an incineration alternative. No test results for total chlorine content of the contaminated material were presented. This is a critical parameter for evaluation of incineration alternatives. Since the primary contaminants include chlorinated organics the air pollution control wastes can be expected to contain significant chloride content.

Treatment of wet scrubber waste water to remove chloride is generally not feasible and is expensive, resulting in either a concentrated brine or a high salt content solid both requiring offsite disposal. Similarly, dry scrubber systems, result in a high salt content solid. Stabilization of such solids with fly ash is likely to result in significant leaching of
chloride to ground water and surface water. Disposal onsite of wastes from either wet or dry design air pollution control systems would most likely result in significant chloride pollution of Conneaut Creek potentially with considerable environmental damage. Testing of total chlorine content, calculation of chlorine mass balances for incineration air pollution control systems and evaluation of associated costs and environmental impact should be undertaken before selecting a remedial option.

With reference to incinerator ash the FS states "if delisting is not possible, the material would need to be disposed of in a RCRA landfill as discussed in alternatives E and F." Construction and operation of an onsite RCRA landfill would require long term maintenance. If the waste is successfully delisted it would still remain a nonhazardous waste. Backfilling of the ash was not discussed with respect to compliance with State requirements for landfilling nonhazardous waste.

Mechanical excavation is expected to extend about 30 feet deep for all source control alternatives except containment. The contaminated material occurs within 50 feet of a very steep slope leading to Conneaut Creek. No strength data was presented in the RI/FS for the soil. However, stability of the excavation at such depths is uncertain. An outward failure with release of contaminated material to Conneaut Creek is a risk which has not been addressed in the RI/FS. Such a failure could result in far greater risk to public health and the environment than is presented by the site in its present condition. Strength data for the soil should be obtained and a geotechnical evaluation of the risk associated with excavation should be undertaken prior to selection of a remedial alternative.
The FS states "The conditions at the Big D site are favorable because the depth of drums and the drums are expected to be in generally good condition based on the results of the test pit excavation." The RI, page 5 of Appendix I, however, states that "Over half the drums observed were either partially crushed or ruptured." The above conclusion concerning the excavation of drums is inconsistent with the test pit results presented in the RI. It should be noted that excavation of the drums would be expected to result in rupture of many of the drums which may be currently intact.

During screening of remedial technologies all solidification/stabilization techniques except in situ vitrification were eliminated. It appears that one technology was not considered and that other technologies were eliminated without adequate test data. The technology now exists to use large diameter augers through which a stabilization fixation slurry is pumped. The auger mixes the slurry with the waste material and contaminated soils, drums would be ruptured and the contents fixed within the slurry. This technology is not subject to the same limitations as the other solidification/stabilization technologies listed on Figure 2-1. In addition, other stabilization techniques were eliminated based on questions of effectiveness and possible leaching. Bench scale tests should have been completed prior to elimination to determine if effective treatment mixes are available.

In addition, excavation and offsite incineration of intact drums combined with stabilization of the soil and ruptured drums should be considered. It does not appear that these alternatives were considered.
Neither the description of each alternative nor the cost estimate table for each alternative present adequate detail to determine if all essential elements of the alternative have been considered and to determine if the cost estimates are consistent and accurate.

Risks were evaluated on future site use (residential scenario). The risk associated with present use needs to be discussed.

The procedure to calculate the exposure dose is different - the intake factors defined below are not the same. Why are these values different?

\[
\text{Intake factor} = \frac{\text{exposure dose}}{\text{maximum concentration}}
\]

Calculations for worst and probable case conditions for soil ingestion utilized maximum and mean concentrations as well as frequency of exposure. Calculations for worst and probable case conditions for water ingestion utilized maximum and mean concentrations and frequency of exposure was excluded. The use or non-use of a frequency factor requires explanation.

It is stated that the environmental exposure considered the most likely to occur is the ingestion of aquatic life that inhabits Conneaut Creek. No rationale was presented to support this statement, nor was the risk for this exposure route calculated. Please explain.
The rationale for including the factor frequency of contact (days) in the exposure dose equation 365 days (6-1) is not clear. Frequency of exposure is not generally considered in calculating a hazard index.

Table 1-10 WQC for the consumption of aquatic organisms only - The reference for these values was not given.

The WQC for chlorobenzene taken from a 1980 EPA reference is 7.2E-04 and 7.4E-04. The EPA manual gives a value of 488 - same units.

The WQC for chlorobenzene was quoted as 7.2E-04 μg/L for consumption of drinking water and aquatic organisms and 7.4E-04 μg/L for the consumption of aquatic organisms only from a 1980 EPA reference. A more recent reference, EPA SPHEM, 1986, gives WQC value of 488 μg/L for chlorobenzene for both consumption of aquatic organisms and drinking water and for the consumption of drinking water only.

The worst case soil ingestion of 1x10^{-3} was selected. Is the basis for selecting this value valid? See page 6-5
APPENDIX C
BIG D CAMPGROUND SUPERFUND
SITE PROPOSED PLAN

Transcript of public hearing held on
Tuesday, the 8th day of August, 1989, at
the Kingsville Fire Hall, Kingsville, Ohio.

KATHRYN KINNEY FOXX
Court Reporters
8547 Hilltop Drive
MENTOR, OHIO 44060
Phone (216) 287-2511
APPEARANCES:

Ms. Gina Weber,
United States Environmental Protection Agency;

Ms. Janice L. Bartlett,
Remedial Project Manager,
United States Environmental Protection Agency;

Mr. Joseph Dufficy,
United States Environmental Protection Agency;

Mr. Rick Nagle,
United States Environmental Protection Agency;

Mr. Dan Markowitz,
Ohio Environmental Protection Agency.

- - - - -

PROCEDINGS

MS. WEBER: We're going to get started.

Good evening and welcome to the Big D Campground Superfund Site public hearing. We are glad you came out tonight to this public hearing.

My name is Gina Weber and I'm with Community Relations, the Office of Public Affairs at U.S. EPA, Chicago and I'm a community relations coordinator.

I'll be giving you a little
background about the site in case you
are not familiar with our past meetings
or you did not receive the information
in the mail or you did not attend past
meetings.

In 1983 the Big D site was
placed on the national priorities list.
This list is a national list of all
hazardous waste sites eligible
for superfund money. From 1986 through
1988 U.S. EPA conducted a study that
we call a remedial investigation to
determine the nature and extent of
contamination at the site.

Tonight we are here to give
you the results of the study and also
to present alternatives for clean-up
of the site and our preferred alterna-
tives.

These alternatives were identi-
fied in what we call a Feasibility
Study. All reports of the studies
and additional information can be found
in the Kingsville Public Library. Also,
you can find them in the factsheet that
we passed out tonight. If you didn't get one, we can pass more around, or you got it in the mail.

Anybody who wishes to be on our mailing list to get future mailings, when you signed in you could be included on that. Also, you can send your name and address to us and any additional people you might think want to be on the mailing list.

In addition, all of the information that we present to you tonight is found in some simplified or smaller way here because the rest of the materials, as I mentioned, are in the library in more detail.

Present tonight are Janice Bartlett, she is our remedial project manager for U.S. EPA. She is in charge of the project for EPA.

Joe Dufficy, who is sitting in the back, who is chief of the Ohio-Minnesota Superfund for U.S. EPA.

Dan Markowitz, who is a project coordinator, also in charge of this
The agenda for tonight will be the introductions which I've already done. Janice will give you an overview of the remedial investigation, the feasibility study and then the proposed plan. Then we can have a question/answer period, and after we will have an official comment period which we have a Court Reporter sitting right here who will take down all of your oral comments.

If you do have written comments we can take those postmarked no later than August 26, 1989. If you don't have the comments tonight, we will still receive them in the mail. Our address is found on the back of the sheet. Instead of Georgette Nelms, you may address it to me Gina Weber.

Comments from Ohio EPA and other interest agencies and the public must be considered by the U.S. EPA before making a final decision in this project.

After the comment period is over we will respond to comments, what we call
a responsiveness summary which is the answers to all the comments and questions that we've had throughout the comment period. These will be also placed in the library depository.

After this the U.S. EPA administrator will sign what we call a record of decision or a ROD, as we term it, which will be announced and made available to the public in the library, and we will put an ad in the paper announcing that this decision has been made.

Now Janice will present to you some information on what we have.

MS. BARTLETT: First, I'd like to go through some of the site background with you. As you probably all know the site is located just south of Creek Road in Kingsville immediately west of the Big D Campground and bordered on the south by Conneaut Creek.

This location was once operated as a sand and gravel quarry where hazardous and nonhazardous wastes were later filled in. These wastes were
deposited in plastic drums and also in bulk in loose quantities. The EPA has written documentation that there were at least four hazardous wastes disposed of in this landfill. The site itself, the landfill is approximately one to one and a half acres in size and approximately 20 feet deep.

In order to study the site we first did a remedial investigation, and the purpose of this is to determine the nature and extent of contamination and to determine, does contamination danger the health of the public or the environment, and third to help us gather data on how we can clean up the site.

There are four specific areas that we looked at when we were studying the site. What we looked at were the soil around the landfill, the groundwater which is the water located below the surface of the earth, the landfill itself and the surface water, we took samples from the creek.

When we take samples at hazardous
waste sites we analyze for two separate
types of compounds, organic compounds
and inorganic compounds.

Just to briefly let you know
what those are. Organic compounds are
compounds which contain carbon in them.
Inorganic compounds simply do not contain
carbon.

An example of these types of
compounds, inorganic are commonly metals
which occur naturally. Although organic
and inorganic occur naturally throughout
our environment, when we are analyzing
samples from a hazardous waste site our
laboratories separate these two types of
compounds. When we get results back
from a site it's separated into organic
and inorganic.

Since most of the inorganic
compounds we identified at the site
were metals I'll simply refer to them
as organic compounds and metal compounds
when I tell you what we found there.

First of all, we looked at the
soils around the landfill. This is a
blow-up of the map that's in your facts
sheet that you have which is on the
very first page.

This identifies soil sampling
locations on the site which are indi-
cated by the squares. The samples
taken there identified there were very
low concentrations of metals on the site
in the soils and fairly high concentrations
of organics on the site in the soil.

Secondly, we looked at the ground-
water of the site. I'd like to tell
you first of all that the groundwater
flow at the site flows in two directions.
We have approximately -- right through
the landfill is what we would call a
groundwater divider. Where groundwater
flows north and then from here down it
flows south toward the creek.

In addition, when we were studying
the groundwater we determined there were
three separate units which we call aquifers
which are soil units below the surface of
the ground which hold water. We identi-
fied these in this cross section. What
we did was, we took the cross right through here, a cross section right through the center of the earth looking at it sideways with the landfill here. This is the surface of the ground with the slope that goes down to the creek. We identified that there's a water table aquifer on the surface. Underlying we have a deep aquifer which we also looked at and over toward the creek what we call the creek aquifer.

What we did when we sampled the groundwaters, we looked at both monitoring wells which were installed on the site which are identified by the solid black dots on the map, and we also looked at residential wells which are identified by the open circles in these areas.

What we found when we investigated these wells was that there was widespread very low concentrations of metals through all three of the aquifers of the site. We did not find any metal contamination in the residences.

As far as the organic contaminants
that we found at the site, we found very low levels in the very deep aquifers and the levels very high both in the upper aquifer and near the creek. Again, residential wells were not affected by this contamination that we found at the site.

In addition, based on the sampling that we did, we put the information of concentrations or levels of contamination that we found into what we call a computer groundwater model which estimated that based on the concentrations we found on the site a plume boundary or the extent that the contamination has moved is approximately in this area. However, as I said earlier, none of these residential wells were affected by any of the contamination. So this is just an estimate of where this contamination is.

The third area we looked at was the source area or the landfill itself. We took limited samples at the landfill. Basically we went in there just to identify that there were buried
drums in the landfill, but also to get some samples from the landfill in which to identify that there were the same contaminations in the landfill, both organic and low inorganics or metals in the landfills, but the concentrations were much greater since this is the source of the contamination at the site.

Fourth, we did some sampling in the Conneaut Creek just south of the site. We identified that there were low levels of organics and metals. However, these metals were slightly elevated above samples that were taken upstream. In other words, a sample upstream because the water flows in this direction, and as any contamination we found downstream was very slightly elevated from those that would not have been affected by the site.

In addition, the levels that were found in the creek were below state regulatory standards, and the creek contamination was much lower than that found in the aquifer, or in the aquifer
right next to the creek itself.

The next thing we did based on the information we had on the sampling was what we called a Risk Assessment. What this does is determine how contamination can reach you and how it can affect you. We looked at six different pathways that contamination can reach you.

First of all, the pathway of ingestion, taking it into your body. We looked at the possibility of ingesting soils on the site, the groundwaters, surface water from the creek, and the aquatic life and animals that live in the creek.

The other two pathways we looked at were direct contact. Direct contact with soils on the site or with the surface water in the creek.

When we evaluate risks we're looking at cancer-causing risks and noncancer-causing risks which would be some type of risk that would produce other negative health effects.
The potential risk that we found at the site were the ingestion of the groundwater based on contamination that we did find right on the site itself.

We identified that there are both an increased cancer-causing risk and noncancer-causing risks based on the ingesting of groundwater.

The second risk we determined existed in the source area, the landfill. This is where the contamination is originated from. These risks are what concerned the EPA, and that's why we're here to give you this information tonight.

The next step is a feasibility study where we develop alternatives to address the groundwater and the landfill contamination.

Our goal at this site is to clean up the source area, or the landfill and the groundwater contamination that we identified. We came up with nine alternatives to address the contamination at the site.

Each of these nine alternatives
were compared to the EPA's nine criteria. We've got a large chart that's in your facts sheet on pages eight and nine. This shows the nine alternatives as the EPA evaluated to clean up the site.

In your facts sheet it's separated onto two pages.

We have the nine criteria that the EPA looks at to evaluate alternatives. I'll quickly go through these criteria with you that we look at.

First of all, it's overall protection of human health and the environment, which is how risks are eliminated or reduced or controlled at the site. We look at the compliance with State and Federal regulations. We also look at the costs involved to implement a specific alternative. Number four is implementability which is simply feasibility, technical and administrative feasibility of doing an alternative site.

In other words, the availability of materials that we need in order to
do an alternative or the services that we need to determine if they're available to us.

The fifth criteria is short term effectiveness which looks at the time that it would take for us to reach our goals to clean up the site, and also any adverse effects that might be posed to workers or the public during a clean-up activity.

Number six is long term effectiveness, and this is the ability to maintain protection of the public after our clean-up goals have been met.

Number seven is reduction of toxicity, mobility and volume which is simply how does an alternative, a clean-up alternative reduce any toxic effects; how does it reduce the ability of contamination to move, and how does it reduce the volume of contamination.

Number eight is the state acceptance, and currently the Ohio EPA concurs with our proposed alternative at the site.
Number nine is community acceptance which is why we're here tonight at the public comment period, to get the community's input into our preferred alternative.

Quickly I'd like to briefly go through our alternatives.

Number nine is our preferred alternative. I'll quickly explain to you why the other eight did not meet the criteria.

Remedial alternative one which is the no action alternative which is required by U.S. EPA policy for us to evaluate every site that we're at to determine if it's feasible for us to walk away and not do anything at the site.

Obviously that does not provide any type of protection to the public because we already know there are risks involved.

Alternatives two through five were eliminated because they do not meet state and federal regulations and that's
necessary for any type of clean-up. The reason they don't meet those regulations is because they do not deal with the groundwater contamination of the site.

Alternative six does not reduce the toxicity or the volume of the landfill. It does not provide long-term effectiveness in permanency because the source area is not removed from the site.

Alternative number seven was eliminated because it was not easily implemented. There are very few trained experts that can do this type of work required by alternative number seven.

Number eight is not protective of the community during transport of waste off-site which would be required by alternative number eight.

Number nine, as I said, is our preferred alternative to clean up the site and to meet the risk objectives.

Let me quickly go through with you what we're planning on doing with alternative number nine.

This is our proposed remedial
action which is on Page 10 of your facts sheet. It involves, first of all, putting a fence around the entire landfill. We will be excavating and incinerating the contents of the landfill. You'll then be putting the ash from the incinerator back into the excavated area and filling in the remaining excavated area with sands and soils. That deals with the source, with the landfill risks that we evaluated.

As far as the groundwater is concerned, we're going to be installing two interceptor trenches. One which would be located on the outer extent of the plume of the contamination that was found in the groundwater. One would be located approximately midway between the source and the outer extent. We'll also be extracting wells from the deep aquifers in this area, there are practically three wells. We'll also be extracting groundwater flowing toward the creek.

This water that's collected from the ground will be treated and then dis-
charged to Conneaut Creek as long as it meets state requirements for discharge.

We will also be monitoring groundwater outside of the trenches and just south of the extraction wells on the south side of the site. We will also be monitoring the surface water to make sure there is no increased contamination in the creek itself.

That's all I have to present to you tonight. I would like to answer any questions that you have, and if you think of something after you leave tonight please feel free to call me.

As Gina said, our address and phone number are on the back of the facts sheet.

MS. WEBER: We do have a toll free number.

Any questions?

AUDIENCE: When did you do this?

MS. BARTLETT: They started in 1986. I believe late 1986 and it ended approximately a year and a half
The monitoring wells were installed all around the landfill and then there was some testing, excavation, a little excavation in the landfill.

AUDIENCE MEMBER: How are these trenches going to affect us who live between them?

MS. BARTLETT: The trenches are going to be below the surface of the ground. Once they're actually installed there will not be any surficial evidence of them.

AUDIENCE MEMBER: Meaning it's right on our land?

MS. BARTLETT: This is just an estimate as to where the trenches are going to be right now. Since our computer estimated that the contamination has moved this far, we already know that we have to do more investigation to find out exactly where the contamination is because we obviously have not found any contamination in the residential areas.

AUDIENCE MEMBER: What about west
of it, did you do any testing?

MS. BARTLETT: Based on -- to
the west of the site since we have identi-
fied that the groundwater is flowing both
north and south there was not any threat
to the west. I'm not exactly sure. I
don't believe there were any residential
wells located to the west, either.

AUDIENCE MEMBER: The wind pri-
marily comes out of the northwest, I would
live downwind from this. You're going
to dig this up and you're going to move
it to an incinerator; is there any danger
to the people who live downwind while
you're digging this up out of the ground
and transporting it?

MS. BARTLETT: The incinerator
itself will be located right in this area.
There will be workers on the site. There
will also have to be continuous air monitor-
ing to make sure that there is not any
high levels coming out of the ground.

We'll definitely be aware of the
residents in that area. Maybe you can
show me later on where you're located.
AUDIENCE MEMBER: Right where your L is.

MS. BARTLETT: Right in this area?

I'd certainly like to talk to you about that afterwards.

AUDIENCE MEMBER: Are you going to have any type of scrubber on this incinerator, some type of scrubber system?

MS. BARTLETT: I'm not sure of the specifics of the incinerator, but it has to meet all regulatory standards and a scrubber is apparently one of them.

AUDIENCE MEMBER: What about those of us who have wells inside the plume area?

MS. BARTLETT: These wells were sampled. People that were drinking wells, they were sampled previously and there was no contamination found in those wells.

AUDIENCE MEMBER: How long ago was that?

MR. MARKOWITZ: The State did
a sampling for a couple of those homes, it was less than six months ago. Some of the people --

AUDIENCE MEMBER: Nobody ever sampled my well. It's right there, the one on the northeast.

MR. MARKOWITZ: Since the others have been clean, we just spot checked a couple of them. If there was contamination we would have gotten it in any of the ones we had spot checked.

MS. WEBER: Maybe we could get his address and check and see exactly where he is.

AUDIENCE MEMBER: What is the chance of the plume area moving further north?

MS. BARTLETT: That's why we're going to be doing additional sampling, in order to determine exactly where it is prior to us installing this groundwater treatment system. We're going to find out exactly where it is before we do any of this.

AUDIENCE MEMBER: That's just
an estimated area now? You're not sure for sure if it's across the road, are you?

MS. BARTLETT: We haven't picked it up across the road.

AUDIENCE MEMBER: That's what I mean, it's an estimated area?

MS. BARTLETT: Yes. This is estimated based on the concentrations that we found in these wells right here.

AUDIENCE MEMBER: I would say it would be more going east or west.

AUDIENCE MEMBER: I see the hourglass around the dump there. You've only checked water in the campgrounds and that's all you've checked?

MS. BARTLETT: We checked a couple of wells located in the campground area.

AUDIENCE MEMBER: That's all you've checked, water? You haven't checked soil or anything else? It seems to me the hourglass effect around the site there --

MS. BARTLETT: That's why we
did soil sampling within this area and
down towards the creek.

AUDIENCE MEMBER: But only
towards the thing there. You're saying
that it hasn't expanded from there?

MS. BARTLETT: We have not
found any contamination. Based on the
contamination that we did find in the
soil there are no threats posed from
soil contamination. The only risks
we found were in the groundwater.

AUDIENCE MEMBER: But you
didn't check anywhere from side to
side?

MS. BARTLETT: We didn't
do any other soil sampling.

AUDIENCE MEMBER: You're talking
the groundwater in the spring, the
water table in our area, if you dig a
foot down the water stands in that hole.
Is that contaminated water laying there?

MS. BARTLETT: Where are you
located?

AUDIENCE MEMBER: Where the Big
D Campground crosses Creek Road.
MS. BARTLETT: We have not found any groundwater contamination in these residences north of the site, and on the site itself the groundwater was practically 17, 20 feet below the surface.

AUDIENCE MEMBER: That's from the site?

MS. BARTLETT: Right.

AUDIENCE MEMBER: From the site to where water sits in our front yard it's probably a 30-foot drop from there. I got water standing there from mid-summer. I'm the closest house to it.

MS. BARTLETT: You're the closest house?

AUDIENCE MEMBER: We're the new house on the left.

MS. BARTLETT: You're saying you have standing water when it rains?

AUDIENCE MEMBER: Standing water all year long. They were in there last fall, EPA was. They had a white van.

MS. BARTLETT: They did sampling at your house?
AUDIENCE MEMBER: They sampled the site yard.

MS. BARTLETT: Maybe we can talk to you about it afterwards. We have the State here tonight.

AUDIENCE MEMBER: They got stuck out there quite a bit.

AUDIENCE MEMBER: What about to the south of the creek? I'm approximately maybe 300 yards west on the south side of the creek from the dump. What have they done there? Have they done any testing?

MS. BARTLETT: No, they haven't done any --

MR. NAGLE: We did some residential sampling across the creek and found nothing.

AUDIENCE MEMBER: What if we wanted our water tested, would you test it for free?

MS. BARTLETT: We could certainly talk to you about that and find out exactly where you're located and what kind of risks there are posed
to you by any contamination.

I can talk to you about that afterwards.

AUDIENCE MEMBER: You said you found it in the water tables, would that affect the trees, the orchards, peach trees and apple trees around here?

MS. BARTLETT: There hasn't been any evidence of any problems with that.

Aren't the orchards located to the west of the site?

Since any contamination that we've found so far, the groundwater is not flowing to the west from the site. It is only flowing north and south, so there shouldn't be any affect to the orchards.

AUDIENCE MEMBER: Did I understand you correctly that it was in the air?

MS. BARTLETT: No. No, there is not.

AUDIENCE MEMBER: Just the ground?

MS. BARTLETT: Right.
AUDIENCE MEMBER: If those drums are leaking, why wouldn't that spread farther out?

MS. BARTLETT: That's basically because of the movement of the groundwater under the landfill. Since the groundwater is flowing to the north and south, that's how the leaking drums and materials in the drums are dispersed in the groundwater table, based on the water movement.

AUDIENCE MEMBER: What's the difference between your elevation, between this and the north side of the road?

MS. BARTLETT: I'm not exactly sure of that. We can look that up. I have a map. I can check on that for you.

AUDIENCE MEMBER: I think that elevation is quite different and I can't see why there would be contamination from water on the north side of the road coming from the land.

MS. BARTLETT: I'll pull out the map and we'll look at that and I'll talk to you about that.
AUDIENCE MEMBER: That drawing that you have there, is it compatible with the depth of the --

MS. BARTLETT: This drawing right here?

AUDIENCE MEMBER: That's ground level down where it's at. He's talking where the residential is.

MS. BARTLETT: Right. This is just approximately here. We have a topographic map. We have figures in our remedial report.

AUDIENCE MEMBER: If you decide to burn it off, how long would it take?

MS. BARTLETT: Actual excavation and incineration would take a year and a half to two years.

AUDIENCE MEMBER: What type of incinerator?

MS. BARTLETT: There are all types. I don't know the specifics of the incinerator, but there are air regulations that it has to comply with. It has to burn off like 99.9 percent of the contaminants in the soil.

AUDIENCE MEMBER: What happens
if something goes wrong?

MS. BARTLETT: You're going to have agencies out there at all times.

AUDIENCE MEMBER: I have a four-month-old boy.

MS. BARTLETT: I understand your concern.

AUDIENCE MEMBER: I have a garden and stuff, have you ever tested any fruit and stuff?

MS. BARTLETT: I don't believe we've done testing. The majority of the contamination we found was in the soils below eight feet underground. There was very little contamination in the upper eight feet. Since it goes down with gravity and flows with groundwater, at the site itself it's very deep, the actual soil contamination. I'm afraid we haven't done any.

I will mail you -- when we get further information, when we get more specifics.

We're going to be doing a design
for this cleanup that we're proposing once it's been finalized and we will keep you informed as to exactly what we're going to be doing.

AUDIENCE MEMBER: If the water table is high -- you're saying the water is going down? If the water table gets high won't that come up with the water table?

MS. BARTLETT: The contamination that is in the groundwater can fluctuate during seasonal events. There will be fluctuation.

AUDIENCE MEMBER: Won't there be vapors off that?

MS. BARTLETT: At the site itself the groundwater is approximately 17 feet deep. The small fluctuation that there would be during rain water, because of the rain in the spring or something would be -- still the contamination in the groundwater would be quite a ways below the surface.

AUDIENCE MEMBER: Suppose some of those drums really bursted, then what
happens? Suppose they really burst open, then what would happen?

MS. BARTLETT: If there's liquids in the drums, then it would seep into the soils around the drums and probably slowly percolate due to rainfall that might go through the landfill and into the groundwater, and that's how the contamination that we found so far has gotten into the groundwater. Because there is a lot of contamination in that landfill and rain water does move through it slowly.

AUDIENCE MEMBER: Are you saying there's never -- there will never be a danger of this really breaking loose and the vapors coming out?

AUDIENCE MEMBER: You're talking about when they excavate?

AUDIENCE MEMBER: Right.

MS. BARTLETT: During excavation? When we're actually excavating the drums we'll be continually monitoring any type -- to see what kind of vapors. If there are vapors, high level vapors
coming out of that landfill we're going
to have to make a different system,
perhaps put some kind of cap to catch
those vapors.

AUDIENCE MEMBER: In the meantime
what happens to all the people that are
in the surrounding area if something
happens? This is what I'd like to know.
What's going to happen to all these people
before the excavation?

MR. MARKOWITZ: During the
evacuation and before that as part of the
design phase, we'll go over things like
site safety plans, all kinds of con-
tingency plans to figure out what to do
if we're digging and find a pile of drums,
the backhoe somehow slips and punctures
one and it sprays. There will be con-
tingency plans for that.

The movement of materials isn't
going to be instantaneous. There's not
going to be big clouds of vapors. The
materials aren't like chlorine gas, from
what we know, where a big green cloud would
spread all over. There would be contingency
plans.
and safety plans and you as local residents would be kept informed of all those.
We have the fire department folks who would be on tap and we'd have them to call if we had some severe emergency, which is real unlikely in this kind of situation because there is a buffer distance that you have, but if there were some severe emergency you'd have to do some kind of evacuation and that's always a possibility, but it would hopefully be covered in a contingency plan and that's why we need public comments, to make sure when we develop a contingency plan we'll consider those avenues so we know how to get in touch with people in your house and where everybody is when we're actually doing the work at the site.

AUDIENCE MEMBER: How soon would you start doing this?

MS. BARTLET: We have a design phase which will take approximately a year to a year and a half and we should be able to start excavating and start working within that amount of
time.

AUDIENCE MEMBER: You're saying what, 1990-91?

MS. BARTLETT: Approximately.

MS. WEBER: They have to go through all the designs that we have talked about and they have to get approved plans on how they're going to do the cleanup and all the precautions. It takes that long to test and make sure it's what EPA and Ohio EPA want.

AUDIENCE MEMBER: Who pays the bill on this? Is the taxpayer getting stuck for all this or the plant that put all this crap there?

MS. BARTLETT: The taxpayer is not involved. The money comes directly from the EPA.

AUDIENCE MEMBER: I pay taxes and it goes someplace to the federal government and it comes back out.

MS. WEBER: Let me explain to you what the superfund is. We have a tax on oil and chemical companies that they pay to the federal government and
Congress set up the superfund law and that is the fund that helps us to clean the sites where potentially responsible parties are either not located or refuse to pay the cleanup, and then what we do is tap into that fund and clean it up.

At different stages of the game we try to either sue back for that money from the responsible party. So at different stages we try to get the money from that responsible party, but in the meantime I think this site we are using the superfund money. So, in fact, your tax money might come because you pay for gas and things like that, but directly it's not our income tax or things like that.

AUDIENCE MEMBER: One other question. Has Olin Chemical been cooperative?

MS. BARTLETT: We negotiated with them and they decided not to. We are going to be negotiating with them again about actually doing the cleanup at the site, the actual remedial action.
AUDIENCE MEMBER. What is the percentage of deterioration of these barrels, do you know that?

MS. BARTLETT: It would be an estimate because we only took a few samples into the landfill because we didn't want to disturb it too much. They found everything from drums that were totally intact to some that were punctured and some that were just crushed.

AUDIENCE MEMBER: That's when they dug those test wells?

MS. BARTLETT: When they went in with a backhoe.

AUDIENCE MEMBER: How safe is that to be standing here when they're out in their white suits standing that close?

MR. MARKOWITZ: They did parameter air monitoring.

RON: We had air monitors on the edge of the fence line and there wasn't any odor at that point. We were standing right at the opening itself.
there was some odors, yes.

AUDIENCE MEMBER: I would think your testing and doing something like that you should at least notify some people that were closeby.

AUDIENCE MEMBER: I would say that well monitoring, especially in the plume area should be more than every one or two years. A well that a family is using --

MR. MARKOWITZ: The State of Ohio has been trying to get monitoring on at least a few wells on all of our superfund sites, including this one.

We may have not have done all of your wells, but we have done a few wells in the neighborhood basically on an annual basis.

Unfortunately we have the same budget problems trying to test water. It's expensive for you to go out personally and test water. If we went to all of our superfund sites and tested all of the wells around them the State of Ohio wouldn t be able to do anything
to participate in these type of cleanups.

We tried to spot check enough of them.

If we get complaints or calls of taste
or odor problems we try to test as many
in the area as we can as frequently as
we can.

AUDIENCE MEMBER: These plans
here one through nine, one through eight
that you could do, if anybody here has
it in your mind that you’re going to
go with number nine or number eight,
but truthfully you could go with number
one and not do anything, right?

MR. MARKOWITZ: I don’t think
that’s --

AUDIENCE MEMBER: Your number
one through eight or nine, and eight or
nine is you dig up the site --

MR. MARKOWITZ: I can’t see how that
would happen. The State is not going
to accept a no action alternative here.
The State is not going to accept alter-
natives one through five because they
don’t meet regulatory requirements.

The U.S. EPA has proposed alter-
native nine as its proposed plan and
we may not accept the final alternative.
It might be a slight variation of nine.

I don't see any reason why Jan
or I or our management would backpedal
and pick alternative two or three. It's
something that we feel is not protected.

AUDIENCE MEMBER: You're starting
at five?

MR. MARKOWITZ: We're starting
at nine, and trying to make it better.

AUDIENCE MEMBER: But it could
backtrack to one or two?

MR. MARKOWITZ: I don't think so.

AUDIENCE MEMBER: You don't think
so?

MR. MARKOWITZ: Unless money
dries up and your legislative people
cancel superfund.

AUDIENCE MEMBER: It could.

MR. MARKOWITZ: That would be
a political move. It's not something
the agencies want to do. The agencies
want to get the best version of alter-
native nine implemented that we can
AUDIENCE MEMBER: We're thinking we're going with number nine and this is going to be a complete cleanup, but it could backtrack depending on the availability of funds backtract to five or four.

MR. MARKOWITZ: Legislatively it would be difficult to do that. We are assigned a record of decision. U.S. EPA and the State will sign a formal record of decision and once that's signed it's very difficult to backpedal and say, "We're not going to do that." We have to have the same kind of --

AUDIENCE MEMBER: But you have that alternative.

MR. MARKOWITZ: There's no backing up mechanism.

MS. WEBER: Unless we do choose a variation of that record of decision. We have to come back and tell you, we're going to change it or slightly modify it. We have to come back and tell you, "We're going to change
this." You'll give us comments again.
It's the whole process.

I've only seen a few sites where we go back and maybe there's a new technical thing up there that can help us clean the site better, some modification. We can't do it without telling you. We have to come back. Even if it's something better we have to let you know. That is all written and it's in the library. What exactly we're going to do will be in the administrative record which is in your library.

AUDIENCE MEMBER: What's the effect on wildlife in this area? I do a lot of deer hunting in this area. If I get a deer out here breaking out of the creek --

MS. BARTLETT: There isn't any. We haven't found any effects on wildlife because the contamination is extremely low.

The State regulations of what contamination was found in the creek all say it's all right for drinking,
the animals are not affected whatsoever in the area.

AUDIENCE MEMBER: Am I correct in what I understand, you found basically no contamination above standard in the creek water?

MS. BARTLETT: Right.

AUDIENCE MEMBER: You found no contamination whatsoever in any of the home wells that have been tested?

MS. BARTLETT: Right.

AUDIENCE MEMBER: Isn’t it true that Olin, at some point, placed a clay cap over this and has a monitoring well and run off trench that are still in place?

MS. BARTLETT: Yes?

AUDIENCE MEMBER: What is the affect -- will that not minimize any continued seepage or groundwater contamination between now and the time that the EPA does finally implement alternative nine or some modification?

Isn’t there some safeguards already in place to reduce, or at least monitor
any seepage that's been going on?

I guess my question is, is it not also true that whatever contamination has taken place through groundwater seepage took place prior to 1983 or 1984 whenever Olin put the clay cap on the area and the water collection trench; is that a fair statement?

MS. BARTLETT: I have no way of knowing when --

MR. DUFFICY: We're not aware of any official monitoring program that Olin has ever taken.

AUDIENCE MEMBER: I'm reading about one right here. It says, "In 1983 when erosion of the landfill cover soil exposed buried drums, Olin placed a clay cap on the surface of the landfill area and took steps to control any further erosion of soil from the base of the slope. Olin also installed a rainwater collection trench on the northern side of the capped area to remove rainfall runoff from the cap, and drilled 11 new groundwater monitoring wells on the site"
to expand its groundwater monitoring program."

MR. DUFFICY: That program does not exist. U.S. EPA and Ohio EPA investigated --

AUDIENCE MEMBER: Olin was monitoring it, the EPA took over and the monitoring stopped?

MR. DUFFICY: Under U.S. EPA procedure --

AUDIENCE MEMBER: Why did the monitoring stop in 1983? Just because the EPA got involved?

MR. DUFFICY: We're not aware of any particular program that would keep monitoring going.

AUDIENCE MEMBER: They were doing a monitoring program and they backed off and EPA took over and no monitoring has been done since the EPA took over, right or wrong?

MR. DUFFICY: EPA has been monitoring.

AUDIENCE MEMBER: But you found no contamination in any of the wells and
there is a clay cap still in place that Olin did put on.

MR. DUFFICY: There is a cap. I don't know if it's a clay cap.

AUDIENCE MEMBER: It says, "Clay cap," in your literature, sir. That was put in place and it's still there; is that correct? Whatever effect, positive effect that may have on any continued seepage, right or wrong?

MR. DUFFICY: It should prevent some.

AUDIENCE MEMBER: Thank you. That's all.

MS. WEBER: I'm not sure if you have any more questions. I want to make it like an official comment. So we can have that in the responsiveness summary. A lot of these questions ran into statements. If you'd like to, if you have a few more questions. We're going to officially have that comment. And for that we need you to stand up and give your name and state your comment and at that time Janice cannot answer.
She might answer it afterwards if you like.

Since it's an official comment, it goes on the record as your statement. We'll have a few more questions and then we'll officially have the comment period to distinguish between the questions that we might have had already.

AUDIENCE MEMBER: I'm glad we have the EPA as far as checking the environment.

My family personally has had the experience of the EPA coming in and saying that something should be done, okay, in a contamination site in Ashtabula at the docks. The EPA was good. But how much power do you have to say this is done correctly.

My husband is dead because of this. What you did was fine. It should have been taken care of. But how much power do you have to say it's done right?

MS. WEBER: I'm not real familiar with the situation with your
husband.

AUDIENCE MEMBER: It has nothing to do with this. It was because of the EPA that this cover was put in effect to keep the environment clean which was needed, but it wasn't done correctly.

How much power do you have to say that this is going to be done correctly?

MS. WEBER: The power that EPA gets is from the legislative branch. We have some laws on the books to monitor and oversee some of these projects.

In the case of this specific project we have Ohio EPA laws. We have OSHA for the workers.

AUDIENCE MEMBER: We've just had so much experience with them not carrying through.

MS. WEBER: I understand. Usually what happens is, laws are made for the larger public and not always geared to individual people.

AUDIENCE MEMBER: Is it true that you can just suggest this is done
this way, that you can't come in and see that it's done correctly?

MR. MARKOWITZ: If this project is done by the fund, it will be done with Jan or a person in her position with direct supervision and it will be done with the State coordinators' direct supervision. It would be done by contractors paid by EPA.

If it's done with PRP funding, potentially responsible parties, if we get that it would be by consent or arrangement where the State of Ohio would have specific authority and the U.S. EPA would have specific authority to direct activities of the site to insure compliance with State and federal laws.

AUDIENCE MEMBER: What part of the State level? What agency?

MR. MARKOWITZ: The person in my position or me would have authority to order work to stop in a consent order if one were signed at the site.

AUDIENCE MEMBER: If something goes wrong at that site, say they're
burning and the levels of gas coming off of this is higher than should be, you can stop it? It will just stop immediately, it won't go on for days or weeks until somebody gets an order?

MR. MARKOWITZ: It's stopped.

MS. WEBER: The incinerator question, we do have a test run. I guess what I can do is send you some information on incineration. If you have some other specific technical information or technology geared information that you need besides incineration we can mail that to you. What we have we can make available to you.

AUDIENCE MEMBER: There were a few questions asked tonight by three or four people and the answers were you'd be glad to answer these questions later on, why can't we all be apprised of these answers?

MS. WEBER: Some people, we need their addresses.

AUDIENCE MEMBER: They all live on Creek Road.
MS. WEBER: If it's an
official comment and they'd like to get
up and state that question again with
their name we can make it available in
this public record in the library.

AUDIENCE MEMBER: It seems to
me it's divide and conquer.

MS. WEBER: If they would
like it, that's something that people
have their private addresses and that's
more for their own personal -- you know;
people.

AUDIENCE MEMBER: What do our
elected officials think of this?

MS. WEBER: I don't know
if they're here tonight. We did let
them know we're going to be here tonight.

AUDIENCE MEMBER: There's one
that's running for trustee.

AUDIENCE MEMBER: How big is
this compared to Mill Road where we're
having all these earthquakes and some-
thing pops and we have no water?

MS. WEBER: I'm not familiar
with that site.
MS. BARTLETT: I don't know anything about that site.

MR. MARKOWITZ: Currently that's a solid waste issue. I'm not familiar with that site.

AUDIENCE MEMBER: This is an acre lot where they have ten acres of contaminated material and people driving up and down the road breathing that dust.

MR. MARKOWITZ: They're a regulated facility. They're regulated because they're an active landfill facility. The facility I think is run by the Ohio Division of Solid and Hazardous Wastes. We have a solid waste program and people specifically inspect that landfill and they can call our office number if they have complaints or concerns and talk to our solid waste people. Specifically if you call our office ask for the person -- I'm not sure who it is.

SUPERVISOR: Presently the U.S. EPA is investigating problems or contact the northeast district, Debbie
Burke, she will give you a name regarding information.

AUDIENCE MEMBER: That's a State licensed landfill?

SUPERVISOR: They have both a State and Federal operating license for both activities, yes. I believe at this interim status they don't have either authority.

AUDIENCE MEMBER: That's half the landfill. The first landfill was State license.

MR. MARKOWITZ: I'm not familiar with the history there.

AUDIENCE MEMBER: State licensed and there was no monitoring of that landfill. In fact, they just shut that down two months ago.

MS. WEBER: It might not be under what we call the superfund.

AUDIENCE MEMBER: You don't get involved until there's a problem?

MS. WEBER: We can give you the number. I don't have the number with me.
MR. MARKOWITZ: That's our office number, too.

Under House Rule 592 hopefully we're going to see a lot less solid waste problems.

AUDIENCE MEMBER: This is acid waste we're talking about now.

AUDIENCE MEMBER: What's this groundwater treatment plant? How long will it be in place?

MS. BARTLETT: I really don't know the details on the groundwater treatment plant, that's going to be installed at the site. We do have specifics in our feasibility study that I have with tonight.

What I do know is that the groundwater will be treated with a system that's called Granular Activated Carbon Treatment System. I can give you specifics on what we have in our document that we wrote up on the feasibility study.

AUDIENCE MEMBER: How long will it be in operation?
MS. BARTLETT: We're estimating that the groundwater well -- groundwater trenches are going to be extracting and treating groundwater for a minimum of 20 years and a maximum of 60 years in length.

AUDIENCE MEMBER: We are the people who are living in those houses that will be between those trenches, they'll be working and digging and going in and out of there for 20 years? It will change our whole quality of life.

MR. MARKOWITZ: No. All it will be is a little treatment building and the trenches will be covered, and unless there is a problem with the trench, and they should be designed to be as low maintenance as possible, they will be there in place with a cover on it.

AUDIENCE MEMBER: It wouldn't take that long to go in and do this and get it over with and take care of it?
AUDIENCE MEMBER: I haven't missed any of the meetings, and I think quite a few of us here haven't missed any of the meetings.

Margaret McCue who was out of Chicago --

MS. BARTLETT: She's still the head of it.

AUDIENCE MEMBER: People were concerned why they just didn't go in there and dig everything out and haul it out. They explained if they did, we would have another Love Canal. That everybody would evacuate. If they went in and dug it up, that's what some of the people wanted to do.

Now, if you go in there and start digging in everything, is it a concern of yours that there may be a problem like that?

MS. BARTLETT: I don't know why anybody would tell you something like that. We've looked at the type of contamination that's been found in the landfill and the soils outside the
landfill, and the groundwater and there's no -- I don't see any reason there'd be any type of terrible thing happening like what happened at Love Canal.

It's really quite small.

AUDIENCE MEMBER: That was one of the questions asked by the people. They said, they'd have to wait and do a study program, which they have been doing. We do periodically get the papers and we haven't missed a meeting. There's a lot here that haven't missed any of the meetings. That was one of the questions. A lot of the people that don't come to the meetings would say, why don't they just get in there and dig it all out and haul it out like it was hauled in.

It was explained to us that they could not do it because they did not know at the time what was in any of those drums.

According to this paper you do know what is in the drums.

MS. BARTLETT: We have taken
samples from the drums in the landfill, and the soil.

AUDIENCE MEMBER: The company that put those there would not tell you what was in the drums?

MS. BARTLETT: We did have a little information from one of the companies that put the waste there.

AUDIENCE MEMBER: You don't have that same concern now?

MS. BARTLETT: Right, because we know what we're dealing with now.

AUDIENCE MEMBER: The cap was on it then.

MR. MARKOWITZ: It's a lot safer to dig up a known quantity than to dig up an unknown quantity and that's one of the reasons why we have, unfortunately, another year to wait. That's one of the reasons we still have more work to do to get the design project done, for some of the concerns you guys have raised this evening.

The concerns about the contingency plans if something bad happens.
We need to make sure we know that when we do go to dig the stuff out that it's going to do the job without endangering anyone. That's projected. We know it takes a long time.

It would be nice if it were so simple to just go and dig it out and take it away.

AUDIENCE MEMBER: That to me would be a wrong, just to go in there and dig it out and take it away. To me that would be wrong.

You've taken tests and stuff, but you don't know what the results are going to be when you get in there and start working with it, what's going to happen.

I know, my husband worked in chemicals and my son-in-law works in chemicals, and also my son works with chemicals so I know.

AUDIENCE MEMBER: How do they do this? How do they go in and dig this plot of ground up to get the barrels?
This isn't new. They've done it before. Can you give us some general idea how it would be done? Do you take a backhoe? What if you break a barrel?

MR. MARKOWITZ: If a drum comes out and it's leaking they'll place it in an overpacked container which is a larger drum. There are also stockpile areas where they keep saturated PEI residue and bulk materials. They have a lot of liquids in them.

Those are the questions you have to answer during the design phase, exactly how we're going to manipulate this material.

AUDIENCE MEMBER: I just wanted a general idea. There's no big secret. They've designed this before, obviously.

MR. MARKOWITZ: They create platform areas so they can control run-off of liquids or they'll have a containment trench or a cement platform and collect the materials that run off and run that through the incinera-
system. Depending on what kind of material it is possibly a shed cover to keep rain water off, possibly just tarps, depending on the quantities and material we're going to dig out.

AUDIENCE MEMBER: The substances that are in there, we wouldn't have to worry about vapors? You dig this stuff out and the vapors come out?

MR. MARKOWITZ: Some of them are volatile and there would be a concern for vapors and that's --

AUDIENCE MEMBER: An explosion?

MR. MARKOWITZ: No.

AUDIENCE MEMBER: Fumes that would cause cancer?

MR. MARKOWITZ: Fumes that might be present in the air and that's why we have continual -- when we'd be doing any active digging I'm certain there would be continual air monitoring around the perimeter to see if there were any vapors leaving the site that were at detectable levels.

AUDIENCE MEMBER: Are you saying
that the reason that it's going to take
a year to do this project is because
Olin won't tell you what's in that site?
I mean, if Olin would tell you what's
in that site, could it be done sooner?

MR. MARKOWITZ: I don't think
Olin knows. They know what they sent
there. They don't know where it is and
exactly how deep it is.

AUDIENCE MEMBER: Are they telling
you what's in that landfill?

MR. MARKOWITZ: We have some
information about what materials they
sent there, yes. Those seem to match
with some of the materials that we
detected.

AUDIENCE MEMBER: Are they
cooperating with you as far as --

MR. MARKOWITZ: The State
of Ohio hasn't dealt with Olin. The
U.S. EPA has.

AUDIENCE MEMBER: I heard when
the State shut Olin down down here they
contaminated the earth 50 some feet
down at their site on Miller Road, and
the State of Ohio told Olin --

MR. MARKOWITZ: That's a portion of another superfund site with Olin.

AUDIENCE MEMBER: Are they cooperating with you and telling you what possibly could be in the site? What possibly could be done there?

MS. BARTLETT: We do have one piece of written documentation as to specific hazardous wastes that were taken to the landfill, and we have received that from Olin Corporation.

AUDIENCE MEMBER: Do they need certificates or anything, or nothing?

MS. BARTLETT: Not when that was operating, no.

AUDIENCE MEMBER: Is any of it flammable?

MS. BARTLETT: I don't believe we've found any flammable materials in the landfill.

AUDIENCE MEMBER: How often will you be testing the groundwater?

MS. BARTLETT: How often will
we be testing the groundwater? I believe in our plan for remedial action we have it scheduled every quarter, which would be every three months.

AUDIENCE MEMBER: It's been six months since the last time you tested it.

AUDIENCE MEMBER: Was Olin the only plant that dumped in that site?

MS. BARTLETT: That's right. That's the only information we have.

AUDIENCE MEMBER: Olin Mathison manufactured vinyl chloride?

MS. BARTLETT: I don't remember specifically, but I think it was.

AUDIENCE MEMBER: Is there any chance of that being contained at all down there?

MS. BARTLETT: I don't have any information on that type of material.

AUDIENCE MEMBER: That was a big scare for Olin Mathison. I worked at General Tire right beside it.

The big scare from Olin was thylene gas leaks. It killed people that worked for them, and every now and
then drifted across in our working area.

There's no chance of that being contained under there at all?

MS. BARTLETT: We have no written information on that being in the landfill.

AUDIENCE MEMBER: I can't understand the government can't get this out of these companies.

They're that big that they can just play dumb and not tell you people, say, "Hey, we don't know."

AUDIENCE MEMBER: It's because of all the lawyers in the country.

AUDIENCE MEMBER: I can't believe that.

MS. WEBER: We do have what we call Title III, where companies are now required to tell their chemicals.

You have to remember a lot of the sites, where they started dumping all over the United States 30, 40 years ago and there wasn't any laws back then and it collects throughout the years.

AUDIENCE MEMBER: These companies
had to have records back in them days
to know what they're sending out of
their plant.

 MR. MARKOWITZ: They may have
or may not have any of those records.

 AUDIENCE MEMBER: You start
from scratch and wonder what's in the
site, that's where you guys are at?
You don't know what is in there?

 MR. MARKOWITZ: We have a
pretty good idea of what's in there.
The test pits were pretty much
complying with what we had expected.

 AUDIENCE MEMBER: But you don't
know.

 MR. MARKOWITZ: When they did
the testing last summer they found what
they expected to find and that was one
of the reasons they did the testing
as an additional investigation from
the earlier work that had been done to
confirm what they had expected as to
the characterization of the landfill
to look like whether it really looked
like that, and that's in fact what
they found.

AUDIENCE MEMBER: You'll just contract this out, right? The State of Ohio won't do this?

MR. MARKOWITZ: No, we don't have the resources to do this. I would feel worse about it if I was out there digging. I don't have experience running a backhoe. It would be very dangerous for you all if I got out there with a backhoe and started opening drums.

AUDIENCE MEMBER: I know you have to have qualified people.

MR. MARKOWITZ: There are requirements for certification from both U.S. EPA and Ohio that would do the work at the site.

AUDIENCE MEMBER: Your contingency plan, possibly you're going to call the fire department in case you have a problem out there?

MR. MARKOWITZ: We know you have a volunteer fire department.

In terms of notification, in terms of an evacuation, we would always have,
as part of any contingency for any site that we work on, we have notification of the local fire department because they're as prepared as anyone to perform.

AUDIENCE MEMBER: Would they have prior training on what to do with these chemicals if they get loose? Who pays for that?

MR. MARKOWITZ: That's part of what has to be worked out in the design phase and in the implementation of this project.

AUDIENCE MEMBER: You're talking about --

MS. WEBER: There was a question back here.

AUDIENCE MEMBER: Suppose you find contamination in water wells, then what happens? How will we be provided with water if the water wells are found contaminated?

MR. MARKOWITZ: I don't know. Short term there might be an alternative water supply like bringing in a tank truck and supplying people with water from the
truck.

If the contamination wasn't the kind that was going to be alleviated rapidly, we'd have to look into developing some type of water system for the area as part of the remedial.

AUDIENCE MEMBER: What we were told before was that if they found any wells that was contaminated they would hook everyone into either Conneaut or Ashtabula, and Olin would have to pay for that.

Now, I'm going back to the other meetings. I didn't bring any of my notes with me, but I have them all at home. They were told if any wells were found contaminated, they would either haul water in or poke them into the Conneaut water system or Ashtabula water system. Does that still stand?

MR. MARKOWITZ: That would be part of the -- if we did find contamination that would be developed as part of the final remedy, to develop an alternative water supply for those people in that area.
whether it be funded by the fund or a potentially responsible party.

AUDIENCE MEMBER: Your plan nine says you're going to prohibit the use of the water wells. Is that what you're going to do? Everybody has a well. It says, you're going to prohibit the use of ground wells.

MR. MARKOWITZ: I think that's site specific. We weren't prohibiting residential well use in the area. We're prohibiting further drilling or future development of wells in the area that would be the site.

AUDIENCE MEMBER: "EPA would prevent the use or installation of ground-water supply wells in the area of the site."

MR. MARKOWITZ: That goes back to the way the U.S. EPA defines the word "site". The site is the area where contamination currently is or where contamination ends up.

AUDIENCE MEMBER: The plume area --

MR. MARKOWITZ: That's an
estimated plume. If we had an actual plume, yes, we would have to develop an alternative water supply.

AUDIENCE MEMBER: All I'm saying is you're going to prohibit the use of wells in that area when you're not estimating anymore, when you have facts.

MR. MARKOWITZ: If we find contamination in residential wells the County Health Department as well as the EPA would try to prohibit the use.

MS. WEBER: Right now there wasn't any contamination at that part.

AUDIENCE MEMBER: Are you talking about taking drum samples or well samples while you're doing this project? Is that the outer wells, the sites that you have in black pyramids or is that the two wells you have there? You have groundwater well, extraction well.

MS. BARTLETT: As far as groundwater, we are going to be continually doing groundwater monitoring to make sure the contamination does not move past where we finally determine where the
plume is, and also to make sure it
doesn't move past these wells.

AUDIENCE MEMBER: That would be
the black wells?

MS. BARTLETT: Right.

AUDIENCE MEMBER: You'll monitor
them?

AUDIENCE MEMBER: The boundaries
of your final plume areas will be deter-
mined by a computer program or by actual
measuring and testing?

MS. BARTLETT: We're going to
be doing more measuring and testing. We'll
also be installing a few more monitoring
wells and we're going to determine exactly
where the contamination is.

AUDIENCE MEMBER: It is possible,
is it not, that both of those trenches
that you're showing there could be, if
I have my directions right, south of
where those homes are?

MS. BARTLETT: Yes.

AUDIENCE MEMBER: So in other
words, that's just a computer model that
has projected where that stuff might have
gone, but you have no evidence
whatever that it has done so by your
monitoring of the homes?

MS. BARTLETT: We have not
detected contamination --

AUDIENCE MEMBER: When it comes
time to install your trenches and your
groundwater monitoring system, if that
is still the case then it is not necessary
that those trenches be placed where you
show them? They may very well be much
closer to the actual site, if that's
the correct site, where the drums are?

MS. BARTLETT: That's right.

AUDIENCE MEMBER: And both of
those trenches, if it takes two trenches
to do the job, could both be south,
if that's the right direction, of those
homes; isn't that correct?

MS. BARTLETT: That's right.

AUDIENCE MEMBER: Thank you.

AUDIENCE MEMBER: He's trying
to minimize it. It could be worse than
what you think, as you said it is; isn't
that correct?

MS. BARTLETT: We could learn
new information, but right now --

AUDIENCE MEMBER: It could go the other way?

MS. BARTLETT: We only have information on the wells just around the landfill that we've installed.

AUDIENCE MEMBER: It could come back or it could go out, either way?

AUDIENCE MEMBER: Is there a possibility that that could move across Conneaut Creek?

MS. BARTLETT: We haven't detected any contamination south of the creek. So from what we could tell there is no movement south of the creek.

MR. MARKOWITZ: On that figure you'll see how most of the surface area where the contamination is, you'll see how they pinch off in that overbank fill next to the creek. Any of the contamination gets trapped and emerges in the creek or may or may not slip down to the bedrock, but there is no evidence that it has slipped down into the bedrock.

AUDIENCE MEMBER: Because there
is a sand and gravel pit on the south of Conneaut Creek. Is there any danger?

It's a little west. Is there any danger if they go down below the water table?

Is there any danger of that coming across?

MR. MARKOWITZ: It's a different water table and the water table we're looking at in the upper zones is in those three upper layers, one of which is an aquifer and the contamination is there. You'll see how they inch off next to the creek. That body of water is physically separated from any body of water in the surface aquifers across the creek.

AUDIENCE MEMBER: I have a couple questions.

First, I'd like to know what is the total ground area of the source area you've identified?

MS. BARTLETT: The source area, surficial is approximately one acre, 1.2.

AUDIENCE MEMBER: The actual site to be excavated --

MS. BARTLETT: Right.
AUDIENCE MEMBER: -- you've pinpointed about one acre?

MS. BARTLETT: Right.

AUDIENCE MEMBER: Is that based on information that you've received either from Olin or elsewhere, or from the actual --

MS. BARTLETT: That's based on information that we've received from the transporter, and also we went in at the very start of our investigation and did some further work to try and locate areas where drums were buried to get a better idea of the actual size of the landfill, which verified information we got from them.

AUDIENCE MEMBER: The bulk materials not being in drums, was the majority of the area of the quarry checked with your wells or the area that the transporter and Olin had identified?

I don't know how large of an area, not being here at the time, how large the quarry actually was. Was it
one quarter of the quarry as it existed that's now being excavated or the entire area?

MS. BARTLETT: I believe, from what I understand from the history of the site, the quarry area wasn't where the landfill is located. When they took the sand out and they removed all the sand that they could in that area then wastes were just hauled in because it was available.

AUDIENCE MEMBER: The second question, or inquiry, how many actual EPA employees will be on site? The excavation and the incineration is contracted out, is the monitoring, constant air monitoring, the collection of the samples contracted out also? Is that part of what's overseen by EPA or does the EPA actually do some of the testing and some of the testing done by the contractor?

MS. BARTLETT: The EPA does have contractors to do the work at the site. However, any type of sampling,
groundwater sampling or any further sampling would come back to EPA laboratories, but EPA does oversee all the work being done by the contractors, or if the PRP's are to be doing the work, we would be overseeing them, also.

AUDIENCE MEMBER: The samples that are sent back to EPA are collected by EPA?

MS. BARTLETT: No, they would be collected by a contractor.

AUDIENCE MEMBER: The same contractor doing this monitoring, that would be doing the incineration or a third party?

That would be part of the bid procedure that the contractor -- to lease himself, if you will, by collecting samples to get it submitted to EPA, although EPA does the analysis?

MR. DUFFICY: The cleanup would be undertaken by -- there is a standard contract.

We do take time out of the contract and allocate it towards this project.
AUDIENCE MEMBER: I don't know if I follow. It is the way that it's done all the way around when you have the contract. You're going to contract out the work of collecting samples, is there a possibility of different contractors doing that or is it going to be the same people that are digging up the site and burning and collecting the air samples and collecting the groundwater samples to submit back to EPA, or is it an uninvolved people or uninvolved third party concept laboratory?

MR. DUFFICY: The third party meaning people actually doing the digging and the backhoes have to be done by the same contractor, they would be taking the samples, handling the site. It's kind of an engineering concern and structural concern. The construction is undertaken by a subcontractor. The overall contractor is responsible for engineering samples.

AUDIENCE MEMBER: The immediate supervisor of the contractor and EPA subs?
MR. DUFFICY: It's headed by Jan as project manager. She would be overseeing everything. The contract would also -- the site manager and Jan would be in constant contact and the site manager would be more or less running the day to day operations at the site.

AUDIENCE MEMBER: In all likelihood it would be one of his employees collecting the samples?

MR. DUFFICY: Yes.

AUDIENCE MEMBER: Is there going to be a lot of noise involved in furnaces, these incinerators?

MS. BARTLETT: I'm not real sure about noise levels during construction. I can certainly look into that for you if that is a concern with residents in that area.

MS. WEBER: We might not be able to answer all the questions tonight.

What we're going to do is, we have this little thing where you could
put your address and your question, if you might think of it later and we will mail it back to you, or you can call us on the 800 number or the direct line. If you don't think of anything tonight or you think of something later on, the next day or whatever, please feel free to call us. You don't have to try to think of all the questions. We are available through the numbers on the back of the sheet or you are free to fill out one of these.

If we're done with questions then for an official comment period we need your name and your comment. We'll have one more question.

If you have individual questions all of us will stay afterwards, after we are done answering all of your questions.

AUDIENCE MEMBER: Whose land is this supposed to be under, this dump?

MS. BARTLETT: I understand it's the property of Mr. Dreslinski next-door.

AUDIENCE MEMBER: Some of this
runs over on my land.

MS. BARTLETT: The landfill?

AUDIENCE MEMBER: The drainage ditch down below and some of it runs over on my side. I just wanted you to be aware of the fact.

MS. BARTLETT: Maybe you should write that down for us so we can have that down.

MS. WEBER: All of the questions that dealt with specific addresses we need to get your addresses and where you live for that to be answered.

Officially now if you have any comments state your name and your comment.

AUDIENCE MEMBER: I don't understand. Isn't this all official?

MS. WEBER: It's all official, but a lot of these we're answering as we go and a lot of the comments might need some further research for us to give you an answer. A lot of your questions have run into comments. Now we have to officially have a comment period.

You can also state an opinion or
another question if you'd like. We'll have it as an official record. All of this will be on record anyway, all of your questions, in the transcript and a copy of the transcript will also go into the library. So from the beginning where we started it's still in the transcript. It's just required by law to have an official comment period and, as I mentioned, you can also mail your comments to us. You have until August 26th to do that.

I guess officially we have to respond to the comments during the comment period and the other ones were just general comments and questions on the presentation. Although we have answered a lot of your comments.

AUDIENCE MEMBER: Everything I asked you was official.

MS. WEBER: Well, you can get up and state your name and say, "I officially --"

MS. TAYLOR: If you'd like that comment addressed in the document that they are going to place in the repository called the responsive summary
then you must state it during this next period of time so it will then include a response officially on paper. Otherwise, she answered it and it won't be official in that document.

MS. WEBER: It's in the transcript, but not in the responsive summary.

AUDIENCE MEMBER: Will the transcript, the whole transcript be in the library?

MS. WEBER: Yes. She's taking it down so you have to speak clearly and state your name.

MR. BANCROFT: My name is James Bancroft.

I think the representatives from the EPA here tonight have tried to divide and conquer these people by stating, "That later on we will answer your questions on a one-to-one basis." I've seen the landfill, or have heard of the landfill on Creek Road being ablaze, on fire. We don't know what's dumped in that landfill
because the EPA cannot get a hold of Olin or cannot press Olin into telling us what is in that landfill, and I think you better get on the ball here and try to find out what's in that landfill, how far that landfill is going to seep into everybody's property along Creek Road, across Conneaut Creek and do something about it, because we haven't done anything about it so far.

MS. WEBER: Any comments?

MR. REED: My name is John Reed.

I think the blaze he's talking about wasn't this landfill here, not the one we're talking about tonight. It was that fiberglass dump they had west of that. This landfill I don't think was ever on fire. That landfill blaze that he was talking about was fiberglass dumped at a different time in a different location west of there, and I think -- I'm pretty sure this landfill has never burned.

There's two different landfills
we're talking about. I don't think there's anything being done about that other than it burned for about three months.

MS. FUCHS: Deborah Fuchs.

When you're talking about the checks and balances on the excavating of the site there. I was wondering, it always seems like a bad idea to have the same person policing themselves because a lot of times it seems to get into predicaments later on.

I imagine the people that are excavating have been doing it a while and it would only be hanging themselves if they didn't correctly monitor themselves. There seems like there should be an independent party that monitors those people.

I wonder why. Is it too expensive? Why don't people do that one safety measure?

MS. BENEK: Margaret Benek.

I'd like to know why we aren't getting any direct answers? It's either, "I'm not sure," or, "We're going to have to
monitor some more."

Why aren't we getting a direct answer? We were at the meetings before. We got a little more.

The EPA from federal and State of Ohio have really worked on this and why aren't we getting -- why aren't you more up on it or maybe I'm saying that wrong. Why are you saying so many, "I'm not sure of this," or, "I don't understand this." Why don't they have someone in here that really is sure of it and really does understand it.

I'm not putting you down. I'm wondering why we're getting so many answers of, "I'm not sure. I don't know the answer."

Is it that you really don't know the answer? I know you can't answer me. You won't even shake your head, but do you really know the answer? You really don't know the answer?

MR. MARKOWITZ: We'll go back to questions and answers and talk about it.

MS. BENEK: It's hard to
keep quiet when you want to open your mouth.
Don't put that in there.

MS. WEBER: We'll have more questions if we're officially not having more comments.

AUDIENCE MEMBER: This is a question. Just a few little questions you have here during the official period, is this what you're basing your meeting on?

MS. WEBER: No. All of your questions are going into the transcript and Janice and anybody here will try to answer those. A lot of the questions we got before we need information so we can go back and try to find an answer for you.

The comments are required under the law for us to get. We give you 30 days to respond to the materials we have in the library. So it's something that our Congress has set up in case someone had any doubt that you did state that during the meeting, it is there. So if you are still unsure on a question,
we are still going to be here to answer your questions, but officially we need to do this under the law. It's to protect those if they say, "I didn't say that during the meeting, that's my name and I never said that." We are sure if you did or did not. That's why it seems kind of awkward.

AUDIENCE MEMBER: You say we'll be notified, when they were digging, we were out there, my daughter was swinging and that's only 600 feet and we were never notified that they were going to be digging and they all had masks on and everything. We were never notified about that.

MR. MARKOWITZ: Jan and I are at a disadvantage. She and I have both been on the project for less than a year and the past project managers have either left the agency or have been promoted or are somewhere else in the agency.

The people that were in charge from the Ohio EPA or the U.S. EPA aren't available right now.
As to why that occurred we can check on it and try to figure out why that happened and make sure it doesn't happen again.

The scale of this project relative to those test pits would be that much greater and the need to notify residents would be specifically outlined.

AUDIENCE MEMBER: Will the questions that were asked earlier that were given no answer, that you said, "We'd answer later," there were three or four questions that were asked, will they go on the record?

MS. WEBER: They're on the transcript, but they're not -- the reasons for the comment period, as I said, are official comments that you might have on whether you are in favor or not in favor of that alternative.

A lot of the questions are just to make sure that the committee understands the alternatives, the acceptance of the criteria that we gave you for community acceptance so you understand all the
projects so you can either accept it or not accept it under that comment period.

AUDIENCE MEMBER: The last questions we didn't get an answer so how are they on the record?

MS. WEBER: Some people had specific addresses of wells and things. We need an address to check with our documents to see if it was tested.

Jan I don't think knows all the addresses and which people's wells got tested specifically. We need their addresses and names so we can look through the documents.

If they want now they can give us their address.

AUDIENCE MEMBER: You're going to answer it now, but you wouldn't answer it before.

MR. MARKOWITZ: If they send in a written comment with a question about a specific well that will also get addressed.

MS. BARTLETT: There was a question about standing water on somebody's property on Creek Road. I'm afraid I'm
not particularly familiar with all the homes along the road. I couldn't answer that specific question because I don't know that information.

MS. WEBER: We need your help in giving us your address and where you live so we can go back.

AUDIENCE MEMBER: I have water at my house year-round.

MS. WEBER: Can you give us your address and your name?

AUDIENCE MEMBER: We didn't even get one of these things.

MS. WEBER: We put up public notice.

MR. MARKOWITZ: As you say, your home wasn't built when the last meeting was held.

MS. WEBER: We apologize that you didn't get one. We did put a notice in the paper and we would hope that in the future you will be on our mailing list.

If your house wasn't built during the last meeting --
AUDIENCE MEMBER: We were in it by '87.

MS. WEBER: The last time we were here was in '87. I apologize personally for the ones that didn't get one. We would want you to be on the mailing list. That's also another purpose why we're here.

AUDIENCE MEMBER: Are any of you officials with the EPA here today that were at the last meeting?

MR. DUFFICY: I was here.

MR. MARKOWITZ: He's one of those people that got promoted.

AUDIENCE MEMBER: It's hard for me to be in favor or not in favor of a remedial plan that you really have no idea what you're going to do. You can't tell us where you're putting the trenches, where the plume is, except you want to do something similar to this. How can we make a comment on this? We don't know who's going to be affected by this.

MR. MARKOWITZ: The people who
are going to have trenches built on their property, if that occurs, will be directly involved in the design process and negotiations of the final remedy. So people who are directly affected will be involved as those details of the design start to unfold.

As we said before, the design process takes at least a year and as much as a year and a half. During that time, that's when we get down to the nitty-gritty and say, "The trench is going to be this wide and this deep and it's going to be dug with this kind of equipment and the pipe is going to go this far and go so and so and so and so and so."

People who are active in that area we're going to make an effort to keep them involved.

AUDIENCE MEMBER: I can appreciate that, but you're asking for our comments to say, "Yes, we like your plan or yes, we don't. We don't know any specifics."

MS. WEBER: There's a lot of specifics in these documents. We've
tried to get all this technical --

AUDIENCE MEMBER: I work for a

living, too.

MS. WEBER: That's why

we're here. We took all this information

and broke it down into something --

AUDIENCE MEMBER: I read your

thing. There's no specifics though.

You want us to say yes, we like

it or no, we don't without specifics.

AUDIENCE MEMBER: We only have

until August 28th to answer this?

AUDIENCE MEMBER: After that we

have no say-so at all?

MS. BARTLETT: Public comment

period is 30 days.

MR. MARKOWITZ: These documents,

when they land on my desk they're imposing
to me. This document has more detail,
obviously, than the summary that you've
been handed and Jan had on her copy, but
these are the detailed analyses of the
alternatives, just the section in the
back. These have detailed comments that
the U.S. EPA has written about each of
the alternatives and the different facets of the alternatives that are not in the proposed plan. You can go through this document and find portions of it that refer to alternative nine and it's a much smaller chunk than this whole thing.

AUDIENCE MEMBER: Does that tell you specifics as far as location of what you're going to do?

MR. MARKOWITZ: We don't have a specific location on the plume and during the design project we will be putting wells out and finding specific locations.

AUDIENCE MEMBER: Are you going to allow us to make a comment after that, after you tell us?

You're asking for our comments and our approval before August 26th, and how can we do that when we don't have any specifics as far as that.

MR. MARKOWITZ: That's a valid comment in and of itself.

If you'd like to make that as a valid comment --
AUDIENCE MEMBER: I just did. My name is Jim Baird.

MR. INGRAM: Bill Ingram, Kingsville. Have you had any meetings in our township with the officials or trustees about any of this, any ongoing meetings with them, any follow-up meetings, or do you just pop into town and here we are?

MS. BARTLETT: I've been on the project for six months and we have not had any meetings.

AUDIENCE MEMBER: Will there be any?

MS. WEBER: In terms of community relations, we have been keeping them apprised of all the information. We called a couple of them. They didn't say whether they'd be here or not. That's a concern I would have thought they would have been here. They did receive this.

AUDIENCE MEMBER: There are elected people.

MS. WEBER: There're on our
mailing list and maybe that's something that the town could address to them. We can't say why aren't you here. They are on the mailing list and are notified of the meetings just like you.

MS. DIDONATO: Just so you know, my name is Ann Didonato and I work for Dennis Eckart. We are represented here.

MR. McGINNIS: My name is Carl McGinnis. 3654 Creek Road. I think before we accept or disapprove anything we should have a field representative or an engineer from the EPA who is familiar with this area, who is familiar with the dump, who knows what's going on, to come out and explain to the people of Kingsville because what we have now we're at a blank period.

We have a piece of paper, we have some lines, and that's all we have. We would like to have, as I say, a field engineer or someone from the EPA who is familiar with what's going on to come out and discuss it with us.
AUDIENCE MEMBER: You're going to take this back and work this up again, right? You haven't got a final -- this nine isn't a final, you're going to revise it and rework it?

MS. BARTLETT: It's a proposed alternative.

AUDIENCE MEMBER: It's not --

MS. BARTLETT: We can't finalize it until we have a public comment period. We have to talk to the public and get comments on it.

AUDIENCE MEMBER: You have to do more testing.

MS. BARTLETT: We're going to be looking further into groundwater contamination.

MS. FILLINGER: I'm Marion Fillinger. I'm between those two trenches. I'd kind of like to know where they're going to be before I make a comment on it. I'd hate to see you move it south and it goes through a row of homes because we're in that. There's just no question about it.
AUDIENCE MEMBER: One of the proposals is to buy 20 houses and move everybody out; is that correct?

MS. BARTLETT: I believe one of the alternatives deals with that, but it does not deal with treating the groundwater that we already know causes risk to the public.

MR. RODEBAUGH: My name is Joe Rodebaugh, 3701 Creek Road.

When such time as you people come back with a solid workable plan then I'll give a comment on whether I feel it's to my benefit or not.

I believe you should have another meeting when you come back with a solid plan that you're talking about, not just a proposal.

AUDIENCE MEMBER: When you go in there to make those trenches, you're going to be -- is that off of the site? Is that in people's yards?

Are those people going to be reimbursed immediately for any damage that you are going to do?
MS. BARTLETT: Any damage --

AUDIENCE MEMBER: In the digging
of the trenches and stuff, are those
people going to be paid for that?

MS. BARTLETT: Any damage that
would be done during excavation to put
any type of trenches, we would be repairing
any type of damage made to the property,
to the owners. We will make sure that
property is restored to its original --

MR. MARKOWITZ: Typically in
an area where they do excavation on some-
one's property to install something they'll
photograph and record the site before and
then photograph it after and look at it
after and before and bring it back to
original condition.

AUDIENCE MEMBER: There won't
be anything for inconvenience or anything?

MR. MARKOWITZ: That's an
issue that would be up to negotiation
between U.S. EPA and individual property
owners, and it's one of those lawyer
questions.

AUDIENCE MEMBER: Like she says,
if it moves it's going right through her house.

MR. MARKOWITZ: I don't think there'd ever be a need to install a trench through someone's house. The position of the trench can vary 30, 40 feet and it can still be as effective to mediate the groundwater.

The question would be, how far away does the furthest trench have to be, not whether it has to be in their backyard or under their house.

AUDIENCE MEMBER: The reason I commented on this is my backyard is always a lake after a rain. It doesn't take much more than a teaspoon to get down to water. I'd hate to dig two feet because I'd --

MR. MARKOWITZ: Your backyard would be dry after this. If we put a trench in your backyard it would no longer be filled with water.

AUDIENCE MEMBER: Hurray.

MR. DUFFICY: Can I make a clarifying statement or two here.
What we're trying to do, the U.S. EPA and the OEPA is to present conceptionally what we want to do with the site to fix it, to remediate it.

When we come out with a proposed plan our idea is to primarily give you the concept of the way we think we can best fix the problems posed by the site. Janice has highlighted those.

When we come up with a proposed plan we're going to tweek a few things. This trench here may be moved north or south, the incinerator may go here or there. Those will be done in design.

But when U.S. EPA issues a record of decision the decision will embody the concept you see right here. What we're trying to get you to comment on or a feeling for are the concepts here are what we want to buy into or not buy into.

During an investigation we don't collect the kind of information that allows us to draw a line with a lot of certainty on a piece of paper. We collect
information to try and get as broad of an idea as to where the contamination is or where it might be going, not necessarily the design of the system and machines that are actually going to take care of it.

Is everybody clear on that? We collect two kinds of information. One, to get an idea of the environmental problems that are posed by the landfill site. After we've identified those problems we try to put a remedy together that can best fix those.

After we have made a decision as to what kinds of technologies are best going to do that we'll then go back and collect the right kinds of engineering data to build those systems.

Where we're at now, we think we have enough environmental data to allow us to make a decision that we pump and treat the groundwater collection system using two trenches here that will probably work. We think we have enough information to know there are 5,000 drums in there and it's not a good idea to leave them there.
We know we have to get them out and
incineration is the best way to handle
all residues and contents of the drums.
We have not collected the kind
of information to allow us to make the
definitive statement as to where the
trenches are going to go, and even what
kind of incinerator might be used.

AUDIENCE MEMBER: One question.

These underground things in here, you're saying we're going to take a picture of
the property and when we're all done that
property is going to be the same as it
was before.

If I own a lot of property on
Creek Road, where you're going to put
that cement, plastic, underground --

MR. DUFFICY: The trench?

AUDIENCE MEMBER: The trench.

You're going to tell me you're going to
come in and dig my property up so I can
buffer, that doesn't go any farther and
say, it's back the way it was before.
You're not going to compensate me for
the use of my land and digging a hole in
my land and putting this cement buffer
in my land to protect the rest of the
properties?

MR. DUFFICY: There's two
ways to answer that. One, we can design
the trench to bypass your house if indeed --

AUDIENCE MEMBER: It has to be
on somebody's property.

MR. DUFFICY: And the trench
is definitely an impact to your
property and there's no other way we can
do it, there are means that we can compen-
sate you for it.

AUDIENCE MEMBER: If it goes
through my backyard, I don't care if it
goes through my house, but there's a
lot of people --

MR. DUFFICY: We hope the
design can figure a way to configure
the trenching system to not impact this
property.

AUDIENCE MEMBER: You're talking
about houses, I'm talking about land.
You go through my property, if I own 60
acres of land over there where you're
going to put this trench, and you go
trough 500 feet of my land with this
trench, even though it's farmland, and
you're going to come in and put that
trench in and cover it up and say, "There
you go," you're not going to compensate
me for that land? You're going to say,
"It's back the way it was before"?

MR. DUFFICY: During design
we take it into consideration. We're
not going to come in one day with a
backhoe and dig up your yard.

AUDIENCE MEMBER: The State of
Ohio has done it before. They did it
in Conneaut where they came in and took
over a woman's property and the next
thing you know we have an information
site.

MR. DUFFICY: We make arrange-
ments with the property owners before.

AUDIENCE MEMBER. What about
eminent domain? You can say, "Well,
we're going to come in and do it no matter
what you say."

MR. DUFFICY: Again, how the
property transactions -- I have no idea. We would definitely try to compensate you for your property.

AUDIENCE MEMBER: I worry about the property value. Since this has come out in the Star Beacon anybody that's in the Big D area or near area I think their property is worth squat. Nobody is going to buy that property now. That's what I'm worried about.

When you people get done are you going to come out and give all these landowners, all of us landowners that are in the affected area an affidavit saying, you're all good now. You're 100 percent. Your property is safe. You're right back up to top buck again?

MR. DUFFICY: I think we're fortunate that most of the contamination is located in a real centralized area.

AUDIENCE MEMBER: Do you know how these scares go?

MR. DUFFICY: Pardon?

AUDIENCE MEMBER: You know how these scares go. You have these houses
marked here and them houses in the plume area were in the paper. Do you think somebody is going to buy those people's property now?

AUDIENCE MEMBER: Is it ever going to change? Once you dig this up, put the ashes back in the ground again and supposedly treat the groundwater?

MR. DUFFICY: We hope one day, and one of the reasons why we're proposing to spend $30 million, we hope that one day this will go away and there will be birds and bunnies very happy. If not, we're not doing the right thing.

AUDIENCE MEMBER: What?

MR. DUFFICY: We're not doing the right thing if we can't do that one day.

AUDIENCE MEMBER: It sounds like proposal nine is one of the better ones.

AUDIENCE MEMBER: Are we going to get a chance to comment on this after you make the final plans?

MR. DUFFICY: The official
comment here is to comment on the concept.

AUDIENCE MEMBER: Okay. What about the plan? When you have the plan are we going to get a chance to comment on that, too?

MR. DUFFICY: The actual design documents that the agency will produce, I don't know.

The affected people will, but I don't know how the public comment period on the design works.

MS. WEBER: I think under the law we don't take comments for them. They are placed in the library and you can certainly look at them and call us or send us comments. Under the law we have no way of treating them as community acceptance or not acceptance, unfortunately.

MS. TAYLOR: By law we do come out and have a public notice that the design is done and present that design to you, but there is not a public comment exchange.

AUDIENCE MEMBER: Then you can holler and it won't do a bit of good.
MR. DUFFICY: The superfund EPA headquarters in Washington did a major study of the whole superfund process and one of the findings of the study is to give the community a lot more input in the design phase and not to make this kind of arbitrary cut-off after we get to the RIFS stage and say, "Here's what we're going to do." It may be possible that community groups such as yours and others would have more involvement into the design phase and the project.

We want to keep you as informed as possible. It doesn't do us any good to design something, spend three, four, $5 million on a design and then to have you go berserk, "No, you can't do that."

AUDIENCE MEMBER: The people here have no comment after you do this thing here and come back in a year or however long it takes you?

MR. DUFFICY: If we find in the design that we have to radically modify this concept here, if we have to use three or four trenches, if we
have to use a different system down here, if we can the incinerator, we will then have to come back and say, "We goofed the first time."

AUDIENCE MEMBER: You're protecting yourself with the nine steps. You have nine steps you can go with.

MR. DUFFICY: If we deviate from number nine we have to come here and tell you we've deviated from nine and why we've deviated from nine.

AUDIENCE MEMBER: That's what I want to hear. I don't want you coming back six months from now and say, "We're going with plan number one, we're not going to do anything."

MR. DUFFICY: We said we liked this an awful lot. We liked it enough to come here and tell you about it.

If we change our minds we have to come here and tell you we're changing our minds.

MS. WEBER: Your comments could also be, "I didn't like nine. I
like six."

AUDIENCE MEMBER: Your proposal is nine?

MS. WEBER: We like nine.

MR. DUFFICY: The State likes nine.

AUDIENCE MEMBER: I like nine.

AUDIENCE MEMBER: We really don't have any say-so when the EPA can tell corporations what to do, this little guy over here on Creek Road, we're a drop in the bucket, but at least you're decent enough to come and say, "We think this is the best plan." They didn't think this up overnight, I don't think.

If they have the power to say, "Hey, you guys clear out," we'd have to clear out, but I don't think they're going to say that.

MR. DUFFICY: It's not that easy.

AUDIENCE MEMBER: It's for our welfare.

AUDIENCE MEMBER: I've seen how
county organizations work, not very fast because there's a lot of politics. I'm sure the State works the same way, only slower.

MR. ENGLISH: My name is Robert English. I'm an independent real estate appraiser. I'm not directly affected as the property owners are, but I'm going to be indirectly affected because I'm going to end up probably appraising some of the properties in the area.

The Federal Home Loan Bank made a statement pertaining to values. The Federal Home Loan Bank has issued a memorandum or a statement that now as an independent appraiser or as an appraiser, quote, "We have to, in our profession, notify on the appraisal report of any property that's within one mile of a superfund site." I don't want to speak for the underwriters, but when they see that, to me that means big red flag, and as he just explained pertaining to property values in relationship to political parties
involved, I guess, there's going to be some type of value diminished because of this and, of course, I believe most all the people here are here for the main reason to find out if it can be solved and can be corrected, and how it can be corrected and how soon it can be corrected. This is a big project for a small community to fathom. I don't know that anyone can come out and say, "Yes, this is the way that the design that you folks have is going to work, but right now it's the best thing that this community has to go with," and otherwise in the future this is probably going to end up in Lake Erie if something isn't done and it should be done.

I don't know whether you want that as a comment or a statement or whatever.

AUDIENCE MEMBER: That's what I was trying to get out, answers from you people and he answered them.

MR. MARKOWITZ: If we could waive our hands and make it go away, we
AUDIENCE MEMBER: I know. You have all worked hard. I won't say you didn't work hard.

As he said, he was at the last meeting. Most of us here, a big share of us, have not missed any of the meetings.

It is a concern because we are right across the creek.

Mrs. Thayer has a lot of property across the creek. She is very concerned because her property goes right through the creek. I wouldn't like to live on it and we are concerned, we're concerned about the young people.

I feel sorry for the Brockman's who built a new home there. We are all concerned because you have to take the children, grandchildren, right down the line.

AUDIENCE MEMBER: What if they don't want to take that one percent chance or half percent chance of raising their kids in a place where they might get cancer, come out with leukemia in a
few years. Is the government or the EPA
going to help them, going to give them
money for their house?

MR. DUFFICY: Right now we
don't think that there is that risk posed
by the site to anyone.

If we thought you people or any-
body living near the site was in a lot
of danger we wouldn't let you be there.

AUDIENCE MEMBER: I stand
pretty close to it and those guys were
all in white suits.

MR. DUFFICY: They wear the
suits for different kinds of reasons.
Working with it on a day-to-day basis
they have to take a lot of extra pre-
cautions because they're on top of it.

AUDIENCE MEMBER: He said there
are fumes next to the site. Those fumes,
they do not go up, they don't go up in
the air, they don't drift?

MR. MARKOWITZ: I was referring
to when they were actually working and
doing construction.

AUDIENCE MEMBER: They're going
to be working and doing construction when they dig it up.

MR. MARKOWITZ: And there will be continual air monitoring.

AUDIENCE MEMBER: If something goes wrong is somebody going to run next-door and say, "Hey, you've got to get out of here"?

MR. MARKOWITZ: There would be contingency plans to handle that, yes.

AUDIENCE MEMBER: Who is the bottom person responsible when this is done?

MR. DUFFICY: Pardon?

AUDIENCE MEMBER: Are you people, the EPA, all the way around who will be responsible?

MR. DUFFICY: Yes.

AUDIENCE MEMBER: Okay.

AUDIENCE MEMBER: What happened to Olin? Are they out of the picture?

MR. DUFFICY: Olin will be offered the opportunity to conduct the design studies and to fund the action.

AUDIENCE MEMBER: And flip the
responsibility for the property evaluation?

MR. DUFFICY: If they don't agree to do the design and implement immediate action, we have alternatives to get money out of them.

AUDIENCE MEMBER: But all these poor little peons are probably going to have to hire a lawyer to get anything out of Olin at all. They're the responsible party. They're the ones that come and capped that to begin with. They paid for that deal. Supervised by EPA, weren't they? Wasn't the EPA involved in that capping?

MR. DUFFICY: I think this site is one of the typical examples of why superfund came into being, and that is an unregulated dump. That is why superfund came into being.

AUDIENCE MEMBER: I understood the EPA was involved when they capped it.

MR. MARKOWITZ: That was a direct oversight. That was done voluntarily by Olin.

AUDIENCE MEMBER: Is Olin the
only person that dumped on that site? Does the EPA know?

MR. DUFFICY: We don't have much indication of it. We have records from the transporter that took that stuff. What we have has been corroborated.

AUDIENCE MEMBER: What would happen if the superfund went under?

MR. DUFFICY: I'm out of work.

AUDIENCE MEMBER: You're out of work, but we have a dump here. Is there not a danger of the superfund going out?

MS. WEBER: Let me address this. As individuals, that's the part I often like to suggest to the community, that's something you need to address to your Congressman and representatives.

AUDIENCE MEMBER: She just answered our question.

MS. WEBER: A letter, that kind of thing, personal contact with them.

We work under it. It's in our interest that that fund keeps going and
Congress has to reauthorize it at certain points when the authorization expires.

AUDIENCE MEMBER: Mr. Eckart works hard for the people.

MS. WEBER: If that's all your questions, we'll end the public comment and the meeting and stay around if some of you have specific questions on your homes.

Thank you.
CERTIFICATES

I, Margaret Elmo, Stenotype Reporter
do hereby certify that I was present at
the Big D Campground Superfund Site
Proposed Plan Public Meeting and transcribed
the foregoing meeting into typewriting,
and that this is a true and correct
transcript of my stenotype notes.

Margaret Elmo, Stenotype
Reporter
August 25, 1989

Janice Bartlett
Project Coordinator
USEPA Region 5
230 South Dearborn Street
Chicago, Illinois 60604

Dear Ms. Bartlett:

The Ohio EPA would like the Record of Decision for the Big D Campground Superfund Site to address the following comments. Our comments are intended to address a few outstanding concerns about the implementation of the proposed plan that have not been included in the administrative record. Alternative 9 should provide a remedy that is protective of human health and the environment if these concerns are addressed during or prior to the Remedial Design.

The four main comments below address our concerns about Solid waste issues, alternatives to delisting of incinerator ash, groundwater investigations and groundwater treatability. The fifth comment addresses risk objectives for the project.

1. Alternative 9 requires that delisted ash will be backfilled into the source material excavation. The delisted ash is considered a solid waste under Ohio law and ORC 3734-02-G provides a method for the Director of OEPA to determine if disposal at the Big D site would not pose any adverse effects to public health or the environment. The Record of Decision should indicate that OEPA Solid Waste regulations are ARARs for ash disposal on-site and authority to exempt any substantive requirements of those regulations rests with the OEPA.

2. The FS and the proposed plan should have considered the possibility that the incinerator ash might not meet the substantive requirements of RCRA delisting. During the RD determinations will be made about the treatability of contaminated source materials. If incineration does not produce a delistable ash then the ash material will have to be handled as a hazardous waste. Alternative 7 might be retained or considered as a backup for this eventuality.

3. As noted in section 7.2 of the RI and as we have discussed in the past the extent of off-site migration of groundwater contamination can not be verified without further sampling of groundwater. The Record of Decision should address specific activities that will occur during a pre-design project. What is the extent of the study that is needed to adequately define the extent of groundwater contamination. The ROD should include objectives and suggest
methods for determining the complete extent of off-site groundwater contamination and for characterizing the hydrogeology necessary in order to design the extraction systems. Any further investigation of the extent of groundwater contamination should also be designed to address the concerns of local residents that were presented during the August 8, 1989 public meeting. OEPA will provide the information that our Division of Groundwater has obtained about water usage in that area and any well sample results that you do not already have.

4. In the section 3.3 of the FS process options for the treatment of groundwater are evaluated based on effluent goals from Table 3.1. The substantive requirements of the National Pollutant Discharge Elimination System program as administered by the OEPA Division of Water Pollution Control will ultimately determine the choice of treatment methodologies designed and implemented at this site. While risk based objectives are used as goals for cleanup of a contaminated site, the concentration limits for a discharge are set by the NPDES program based on the water quality of the receiving stream, flow rates, and other factors including implementation of Best Available Technology. It is likely that detailed treatability studies and design review will show that process options in addition to GAC will be required to adequately treat the groundwater prior to discharge.

5. The ROD should indicate that cleanup goals will be based on cumulative risks. Though multiple exposure pathways did not pose significant risks in the RI it is possible that other risks will be documented during pre-design or later phases of the project. Any final cleanup standards should be based on risks calculated from cumulative exposure from all possible exposure routes.

If you have any question about these comments do not hesitate to contact us.

Sincerely,

Daniel V. Markowitz Ph.D.
Environmental Scientist
Division of Emergency and Remedial Response

cc. Fran Kovac, Legal
 Rod Beals, NEDO DERR
 Kathy Davidson, CO DERR
 Jennifer Tiell, CO DERR
<table>
<thead>
<tr>
<th>DOC NUM</th>
<th>PAGES DATE</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>RECIPIENT</th>
<th>DOCUMENT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>13 04/08/82</td>
<td>Response forwarding groundwater monitoring data</td>
<td>Hendey Olin Corp.</td>
<td>Frazier EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>3</td>
<td>14 02/25/83</td>
<td>Comments on the NPL List of the Site</td>
<td>Hendey Olin Corp.</td>
<td>Wyer US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>4</td>
<td>03/16/83</td>
<td>Comments on work and erosion control photos</td>
<td>Hendey Olin Corp.</td>
<td>Wyer US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>5</td>
<td>01/06/85</td>
<td>Approval of work to be done at the Site</td>
<td>Fergus, Ohio Clearinghouse</td>
<td>Ontko US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>6</td>
<td>02/25/85</td>
<td>Transmittal of the hydrogeologic study</td>
<td>Olin Corp.</td>
<td>Ohio EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>7</td>
<td>05/06/85</td>
<td>Response to request to perform RI/FS</td>
<td>Parn Olin Corp.</td>
<td>Oaks US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>8</td>
<td>05/15/85</td>
<td>Notice Letter</td>
<td>Constantelos US EPA</td>
<td>Dreslinski</td>
<td>Correspondence</td>
</tr>
<tr>
<td>9</td>
<td>05/15/85</td>
<td>Notice Letter</td>
<td>Constantelos US EPA</td>
<td>Olin Corp.</td>
<td>Correspondence</td>
</tr>
<tr>
<td>10</td>
<td>05/15/85</td>
<td>Notice Letter</td>
<td>Constantelos US EPA</td>
<td>Brenkus</td>
<td>Correspondence</td>
</tr>
<tr>
<td>11</td>
<td>06/20/85</td>
<td>Sampling of Monitoring Wells</td>
<td>Hendey Olin Corp.</td>
<td>Holaska US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>12</td>
<td>07/03/85</td>
<td>Reassignment of the Site and Sampling Protocol</td>
<td>Bicknell US EPA</td>
<td>Hendey Olin Corp.</td>
<td>Correspondence</td>
</tr>
<tr>
<td>13</td>
<td>07/15/85</td>
<td>Response to 104 Information Request</td>
<td>Olin Corp.</td>
<td>M. Berman US EPA</td>
<td>Correspondence</td>
</tr>
<tr>
<td>15</td>
<td>01/08/86</td>
<td>Deadline for negotiations</td>
<td>Bicknell US EPA</td>
<td>Hendey Olin Corp.</td>
<td>Correspondence</td>
</tr>
<tr>
<td>16</td>
<td>01/08/86</td>
<td>Opportunity to comment on the NPL listing</td>
<td>Constantelos US EPA</td>
<td>Bachman State Clearinghouse</td>
<td>Correspondence</td>
</tr>
<tr>
<td>DOC NUM</td>
<td>PAGES DATE</td>
<td>TITLE</td>
<td>AUTHOR</td>
<td>RECIPIENT</td>
<td>DOCUMENT TYPE</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>17</td>
<td>4 01/30/86</td>
<td>Comments on the Draft Scope of Work</td>
<td>Hendey</td>
<td>Bicknell</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>18</td>
<td>3 02/05/86</td>
<td>Review by EPA of Olin's comments on the Draft Scope of Work</td>
<td>Bicknell</td>
<td>US EPA</td>
<td>Hendey</td>
</tr>
<tr>
<td>19</td>
<td>3 04/04/86</td>
<td>Negotiations on the Site</td>
<td>Norwood</td>
<td>Adamkus</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>20</td>
<td>3 05/02/86</td>
<td>Negotiations on the Site</td>
<td>Adamkus</td>
<td>Norwood</td>
<td>US EPA</td>
</tr>
<tr>
<td>21</td>
<td>1 05/05/86</td>
<td>Ohio's review of the Tyler SW</td>
<td>Adamkus</td>
<td>US EPA</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>22</td>
<td>1 05/05/86</td>
<td>Transmittal of Olin's offer to perform the RI/FS</td>
<td>Norwood</td>
<td>Adamkus</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>23</td>
<td>2 06/24/86</td>
<td>Response to the US EPA 4/2/86 letter</td>
<td>Norwood</td>
<td>Adamkus</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>24</td>
<td>1 08/28/86</td>
<td>Request for information on the cap covering the Site</td>
<td>Bicknell</td>
<td>Norwood</td>
<td>US EPA</td>
</tr>
<tr>
<td>25</td>
<td>4 11/07/86</td>
<td>Location of the waste disposal areas</td>
<td>Bicknell</td>
<td>Bonzo</td>
<td>US EPA</td>
</tr>
<tr>
<td>26</td>
<td>1 12/01/86</td>
<td>Letter to residents on the fact sheet</td>
<td>Bicknell/Mc Cue</td>
<td>Residents</td>
<td>US EPA</td>
</tr>
<tr>
<td>27</td>
<td>1 03/01/87</td>
<td>Introduction of PRC to residents for water sampling</td>
<td>PRC</td>
<td>Residents</td>
<td>US EPA</td>
</tr>
<tr>
<td>28</td>
<td>4 05/04/87</td>
<td>Selection of wells to sample</td>
<td>PRC</td>
<td>Bicknell</td>
<td>US EPA</td>
</tr>
<tr>
<td>29</td>
<td>1 06/12/87</td>
<td>Sampling of Ethanolamine</td>
<td>PRC</td>
<td>Bicknell</td>
<td>US EPA</td>
</tr>
<tr>
<td>30</td>
<td>1 08/19/87</td>
<td>Sample of residents' well</td>
<td>Bicknell</td>
<td>Dreslinski</td>
<td>US EPA</td>
</tr>
<tr>
<td>DOC NUM</td>
<td>PAGES DATE</td>
<td>TITLE</td>
<td>AUTHOR</td>
<td>RECIPIENT</td>
<td>DOCUMENT TYPE</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>31</td>
<td>1 08/19/87</td>
<td>Sample results of residents' well</td>
<td>Bicknell</td>
<td>Spice</td>
<td>Correspondence</td>
</tr>
<tr>
<td>32</td>
<td>1 08/19/87</td>
<td>Sample results of residents' well</td>
<td>Bicknell</td>
<td>Severino</td>
<td>Correspondence</td>
</tr>
<tr>
<td>33</td>
<td>1 08/19/87</td>
<td>Sample results of residents' well</td>
<td>Bicknell</td>
<td>Ramson</td>
<td>Correspondence</td>
</tr>
<tr>
<td>34</td>
<td>1 08/19/87</td>
<td>Sample results of residents' well</td>
<td>Bicknell</td>
<td>Bowers</td>
<td>Correspondence</td>
</tr>
<tr>
<td>35</td>
<td>1 01/27/88</td>
<td>Request for information on Wild Life</td>
<td>Homer</td>
<td>Natural Heritage Program</td>
<td>Correspondence</td>
</tr>
<tr>
<td>36</td>
<td>1 06/03/88</td>
<td>Transmittal of the Draft RI and request US EPA for ARARs</td>
<td>Bicknell</td>
<td>Hannans</td>
<td>Correspondence</td>
</tr>
<tr>
<td>37</td>
<td>1 06/23/88</td>
<td>Comment on the work being performed at the Site</td>
<td>Brown</td>
<td>Bicknell</td>
<td>Correspondence</td>
</tr>
<tr>
<td>38</td>
<td>0 09/30/88</td>
<td>Comments on Work at the Site</td>
<td>Brown</td>
<td>Bicknell</td>
<td>Correspondence</td>
</tr>
<tr>
<td>39</td>
<td>0 12/06/88</td>
<td>Comment on Work at the Site</td>
<td>PRC</td>
<td>Bicknell</td>
<td>Correspondence</td>
</tr>
<tr>
<td>40</td>
<td>4 12/01/86</td>
<td>Superfund Fact Sheet</td>
<td>US EPA</td>
<td></td>
<td>Fact Sheet</td>
</tr>
<tr>
<td>41</td>
<td>16 / /</td>
<td>Topographical Map of PRC</td>
<td>US EPA</td>
<td></td>
<td>Map</td>
</tr>
<tr>
<td>42</td>
<td>1 10/09/80</td>
<td>Inspection of the Site</td>
<td>Briesch, E&E</td>
<td>Goode, E&E</td>
<td>Memo</td>
</tr>
<tr>
<td>43</td>
<td>2 04/01/83</td>
<td>Review of Olin's comments & future work</td>
<td>Hannans</td>
<td>Frazier</td>
<td>Memo</td>
</tr>
<tr>
<td>44</td>
<td>3 06/10/83</td>
<td>Comments on Olin Corps comments on NPL Listing</td>
<td>Gifford</td>
<td>Hannans</td>
<td>Memo</td>
</tr>
<tr>
<td>45</td>
<td>1 05/09/85</td>
<td>Trip Report</td>
<td>Holoska</td>
<td>Bruce</td>
<td>Memo</td>
</tr>
<tr>
<td>DOC NUM</td>
<td>PAGES</td>
<td>DATE</td>
<td>TITLE</td>
<td>AUTHOR</td>
<td>RECIPIENT</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>----------</td>
<td>--</td>
<td>--------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>46</td>
<td>2</td>
<td>07/03/85</td>
<td>Sampling protocol by Bicknell Olin Corp. at the Site</td>
<td>File</td>
<td>US EPA</td>
</tr>
<tr>
<td>47</td>
<td>1</td>
<td>04/09/86</td>
<td>Meeting with Olin Corp.</td>
<td>Frazier</td>
<td>Olin Corp.</td>
</tr>
<tr>
<td>48</td>
<td>3</td>
<td>05/07/86</td>
<td>Action Memorandum</td>
<td>Constantelos</td>
<td>US EPA</td>
</tr>
<tr>
<td>49</td>
<td>2</td>
<td>08/22/86</td>
<td>Trip report on Community interviews</td>
<td>Mc Cue</td>
<td>US EPA</td>
</tr>
<tr>
<td>50</td>
<td>1</td>
<td>10/15/86</td>
<td>Geophysical Reconnaissance Survey</td>
<td>Ostradka</td>
<td>US EPA</td>
</tr>
<tr>
<td>51</td>
<td>1</td>
<td>02/10/87</td>
<td>Trip Report</td>
<td>Mc Cue</td>
<td>US EPA</td>
</tr>
<tr>
<td>52</td>
<td>2</td>
<td>05/11/85</td>
<td>Explanation of procedures to conduct RI/FS</td>
<td>Berman</td>
<td>US EPA</td>
</tr>
<tr>
<td>53</td>
<td>2</td>
<td>03/19/87</td>
<td>Trip Report</td>
<td>Bicknell</td>
<td>US EPA</td>
</tr>
<tr>
<td>54</td>
<td>3</td>
<td>12/18/87</td>
<td>Action Memorandum</td>
<td>Constantelos</td>
<td>US EPA</td>
</tr>
<tr>
<td>55</td>
<td>3</td>
<td>02/23/88</td>
<td>Action Memorandum</td>
<td>Constantelos</td>
<td>US EPA</td>
</tr>
<tr>
<td>56</td>
<td>3</td>
<td>04/14/87</td>
<td>"Wells to help EPA monitor Big D"</td>
<td>News Herald</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>1</td>
<td>03/07/86</td>
<td>List of Attendees</td>
<td>US EPA, OEPA, Olin Corp.</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>1</td>
<td>05/09/86</td>
<td>Press Release</td>
<td>US EPA</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1</td>
<td>02/05/87</td>
<td>Agenda of a Public Meeting</td>
<td>US EPA</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td>05/01/85</td>
<td>Aerial Photo Analysis of the Site</td>
<td>US EPA</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>5</td>
<td>06/27/85</td>
<td>Photo of Site Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOC NUM</td>
<td>PAGES DATE</td>
<td>TITLE</td>
<td>AUTHOR</td>
<td>RECIPIENT</td>
<td>DOCUMENT TYPE</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td>62</td>
<td>6 04/29/87</td>
<td>Photos of the Benthos Sampler</td>
<td></td>
<td></td>
<td>Photos</td>
</tr>
<tr>
<td>63</td>
<td>3 / /</td>
<td>Specifications for sampling invertebrates</td>
<td>CH2MILL</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>64</td>
<td>8 10/09/80</td>
<td>On Site Inspection Ecology & Environment</td>
<td></td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>65</td>
<td>75 04/27/84</td>
<td>Remedial Action Master Plan (RAMP)</td>
<td>CH2MILL</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>66</td>
<td>5 05/01/84</td>
<td>Water Quality Report OEP</td>
<td></td>
<td></td>
<td>Study/Report</td>
</tr>
<tr>
<td>67</td>
<td>75 05/30/84</td>
<td>Hydrogeological Study on the Dreslinski Site</td>
<td>Olin Chemical</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>68</td>
<td>26 03/20/86</td>
<td>Scope of Work for the RI/FS</td>
<td>US EPA</td>
<td></td>
<td>Study/Report</td>
</tr>
<tr>
<td>69</td>
<td>18 11/01/86</td>
<td>Final Community Relations Report</td>
<td>CH2MILL</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>71</td>
<td>61 01/01/87</td>
<td>Health and Safety Plan</td>
<td>CH2MILL</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>72</td>
<td>38 01/14/87</td>
<td>Final Geophysical Survey</td>
<td></td>
<td></td>
<td>Study/Report</td>
</tr>
<tr>
<td>73</td>
<td>75 02/24/87</td>
<td>Approval of Quality Assurance Project Plan for Big D Campground Revision #1</td>
<td>James Adams</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>74</td>
<td>2 08/12/87</td>
<td>Inspection to determine conditions PRC of drums buried-Notes</td>
<td>Riesing</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>75</td>
<td>10 10/16/87</td>
<td>Draft Test Pit Excavation Scope of Work, CBI Information removed</td>
<td>PRC</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
</tbody>
</table>
ADMINISTRATIVE RECORD INDEX

BIG D CAMPGROUND SITE
KINGSVILLE TOWNSHIP, OHIO

<table>
<thead>
<tr>
<th>DOC NUM</th>
<th>PAGES DATE</th>
<th>TITLE</th>
<th>AUTHOR</th>
<th>RECIPIENT</th>
<th>DOCUMENT TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>43 04/05/88</td>
<td>Revision to QAPP</td>
<td>CH2MHILL</td>
<td>US EPA</td>
<td>Study/Report</td>
</tr>
<tr>
<td>77</td>
<td>5 09/09/88</td>
<td>Draft Preliminary</td>
<td>ASTDR</td>
<td>Niedergang</td>
<td>Study/Report</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Health Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** Total ***

3002 918
<table>
<thead>
<tr>
<th>Document Pages Date</th>
<th>Title</th>
<th>Author</th>
<th>Recipient</th>
<th>Document Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>253 06/01/89</td>
<td>Final FS Report Big D Campground, Kingsville Ohio</td>
<td>PRC</td>
<td>US EPA</td>
<td>Report/Study</td>
</tr>
<tr>
<td>127 06/01/89</td>
<td>Final RI Report Big D Campground, Kingsville Ohio Volume I</td>
<td>CH2M Hill</td>
<td>US EPA</td>
<td>Report/Study</td>
</tr>
<tr>
<td>127 06/01/89</td>
<td>Final RI Report Big D Campground Kingsville Ohio Volume II</td>
<td>CH2M Hill</td>
<td>US EPA</td>
<td>Report/Study</td>
</tr>
<tr>
<td>0 09/28/89</td>
<td>Responsiveness Summary</td>
<td>US EPA</td>
<td>US EPA</td>
<td>Report/Study</td>
</tr>
</tbody>
</table>