Quality Assurance Project Plan (QAPP) for
Total Maximum Daily Load (TMDL) Category 4B
Monitoring of the
Sycamore Creek WAU, 05060001 17 04
2019
Fairfield & Licking Counties
Quality Assurance Project Plan (QAPP) for Total Maximum Daily Load (TMDL) Category 4B Monitoring of the Sycamore Creek WAU, 05060001 17 04 2019

Fairfield and Licking Counties

May 2, 2019

Prepared by
State of Ohio Environmental Protection Agency

Division of Surface Water
Lazarus Government Center
50 West Town Street, Suite 700
P.O. Box 1049
Columbus, Ohio 43216-1049

Division of Surface Water
Central District Office
Lazarus Government Center
50 W. Town Street, Suite 700
Columbus, OH 43126-1049

Mike DeWine, Governor
State of Ohio

Laurie Stevenson, Director
Ohio Environmental Protection Agency
SECTION A – PROJECT MANAGEMENT
A1 – Quality Assurance Project Plan for the Biological and Water Quality Study of the Sycamore Creek WAU

Brian W. Hall
Chief or Assistant Chief
Date: 5/13/19

Marianne Piekutowski, Assessment & Modeling Manager
Date: 5/10/19

Ellie Hagen, DSW Quality Assurance Coordinator
Date: 5/02/2019

Jeff Bohne, EAU Supervisor
Date: 05/13/2019

Michael Gallaway, District Manager
Date: 5/2/2019

Jeff Lewis, District Water Quality Supervisor
Date: 5/06/19

Chloe Welch, District Field Staff
Date: 05/02/19

This document, Quality Assurance Project Plan (QAPP), contains elements of the overall project management, data generation and acquisition, information management, assessment and oversight, and data validation and usability for the Ohio EPA Division of Surface Water Program. The complete QAPP includes this document as well as other references. Together, these items comprise the integrated set of QAPP documents. All project members should follow these guidelines. Mention of trade names or commercial products in this document does not constitute endorsement or recommendation for use.
A2 – Table of Contents

SECTION A – PROJECT MANAGEMENT ... 3
 A1 – Quality Assurance Project Plan for the Biological and Water Quality Study of the Sycamore Creek WAU .. 3
 A3.1 – Table 1. Ohio EPA Central Office Staff ... 6
 A3.2 – Table 2. Ohio EPA Central District Office Staff .. 6
 A3.3 – Table 3. Other Interested Parties .. 6
 A4 – Project/Task Organization and Communication ... 7
 A4.1 – Table 4. Roles & Responsibilities .. 7
 A4.2 – Figure 1: Organizational and Communication Chart .. 8
 A5 – Problem Definition/Background .. 8
 A5.1 – Table 5. Existing Biological Data and Aquatic Life Use Status of Selected Sycamore Creek Sample Locations ... 9
 A5.2 – Beneficial Use Designations ... 9
 A6 – Project/Task Description .. 9
 A6.1 – Project Objectives .. 10
 A6.2 – Beneficial Use Designations ... 10
 A7 – Quality Objectives and Criteria ... 10
 A7.1 – QC Performance criteria for water chemistry ... 10
 A8 – Special Training/Certification .. 11
 A9 – Documents and Records .. 11
 A9.1 – Document/record control .. 12
 A9.2 – Document storage .. 12

SECTION B – DATA GENERATION AND ACQUISITION .. 12
 B1 – Sampling Process Design ... 12
 B1.1 – Types and numbers of samples required .. 12
 B1.2 – Design of the sampling .. 13
 B1.3 – Sampling locations and frequencies ... 13
 B1.4 – Sample matrices ... 13
 B2 – Sampling Methods .. 13
 B2.1 – Stream Habitat Evaluation ... 13
 B2.2 – Biological Community Assessment .. 13
 B2.3 – Surface Water .. 14
 B2.4 – Bacteria ... 14
 B3 – Sample Handling and Custody ... 14
 B4 – Analytical Methods .. 14
A3 – Distribution List and Contacts

This QAPP, which includes the associated manuals and guidelines, will be distributed to the following internal staff and Management:

A3.1 – Table 1. Ohio EPA Central Office Staff

<table>
<thead>
<tr>
<th>Name/Title</th>
<th>Contact E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marianne Piekutowski, Assessment & Modeling</td>
<td>Marianne.piekutowski@epa.ohio.gov</td>
<td>614-836-8780</td>
</tr>
<tr>
<td>Section Manager</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeff Bohne, EAU Supervisor</td>
<td>Jeff.Bohne@epa.ohio.gov</td>
<td>614-836-8798</td>
</tr>
<tr>
<td>Chuck Boucher, Fish Biologist</td>
<td>Charles.Boucher@epa.ohio.gov</td>
<td>614-836-8776</td>
</tr>
<tr>
<td>Mike Bolton, Macroinvertebrate Biologist</td>
<td>Michael.Bolton@epa.ohio.gov</td>
<td>614-836-8781</td>
</tr>
<tr>
<td>Jennifer Kraft, DES Environmental Manager</td>
<td>Jennifer.kraft@epa.ohio.gov</td>
<td>614-644-4270</td>
</tr>
<tr>
<td>Steve Roberts, DES QA Supervisor</td>
<td>Steven.roberts@epa.ohio.gov</td>
<td>614-644-4225</td>
</tr>
<tr>
<td>Audrey Rush, STS Manager</td>
<td>Audrey.Rush@epa.ohio.gov</td>
<td>614-644-2035</td>
</tr>
<tr>
<td>Ellie Hagen, Quality Assurance Officer</td>
<td>Ellie.Hagen@epa.ohio.gov</td>
<td>614-705-1011</td>
</tr>
</tbody>
</table>

A3.2 – Table 2. Ohio EPA Central District Office Staff

<table>
<thead>
<tr>
<th>Name/Title</th>
<th>Contact E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael Gallaway, District Manager</td>
<td>Michael.Gallaway@epa.ohio.gov</td>
<td>614-728-3843</td>
</tr>
<tr>
<td>Jeffrey Lewis, District Water Quality Supervisor</td>
<td>Jeffrey.Lewis@epa.ohio.gov</td>
<td>614-466-2657</td>
</tr>
<tr>
<td>Chloe Welch, District Field Staff</td>
<td>Chloe.Welch@epa.ohio.gov</td>
<td>614-728-3852</td>
</tr>
</tbody>
</table>

A3.3 – Table 3. Other Interested Parties

<table>
<thead>
<tr>
<th>Organization (contact name)</th>
<th>Contact E-mail</th>
<th>Phone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pickerington WWTP (Glen Hacker)</td>
<td>wastewater@pickerington.net</td>
<td>614-837-6470</td>
</tr>
</tbody>
</table>
A4 – Project/Task Organization and Communication

A4.1 – Table 4. Roles & Responsibilities

<table>
<thead>
<tr>
<th>Individual(s) Assigned:</th>
<th>Responsible for:</th>
<th>Authorized to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marianne Piekutowski, Assessment & Modeling Section Manager Jeff Bohne, EAU Supervisor</td>
<td>Staff assignment, signatures, payments, and reporting.</td>
<td>Review documents and reports; suggest changes and edits; obtain approvals and signatures.</td>
</tr>
<tr>
<td>Michael Gallaway, DSW District Manager Jeff Lewis, District Water Quality Supervisor</td>
<td>Staff assignment, signatures, payments, and reporting.</td>
<td>Review documents and reports; suggest changes and edits; obtain approvals and signatures.</td>
</tr>
</tbody>
</table>

STUDY TEAM

<table>
<thead>
<tr>
<th>Individual(s) Assigned:</th>
<th>Responsible for:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chuck Boucher, Fish Biologist Mike Bolton, Macroinvertebrate Biologist</td>
<td>Scheduling and coordination of field activities. Complete field activities and quality control; field sampling and analysis, data collection, review, analysis, verification, database population and transmission. Assist with project planning.</td>
<td>Prepare documents and reports. Arrange for external training. Schedule field activities.</td>
</tr>
<tr>
<td>Chloe Welch*, District Water Quality</td>
<td>Complete field activities and quality control; field sampling and analysis, data collection, review, analysis, verification, database population and transmission. Assist with project planning.</td>
<td>Prepare documents and reports. Arrange for external training. Schedule field activities.</td>
</tr>
</tbody>
</table>

*Study Team Leader
A5 – Problem Definition/Background

The Sycamore Creek watershed assessment unit (WAU), formerly HUC-11 05060001 180, was assessed in 2005 in the first phase of a Total Maximum Daily Load (TMDL) study. Ohio EPA Division of Surface Water (DSW) collected biological, chemical and physical habitat data at six sites in Sycamore Creek, and three of those six sites were found to be in partial- or nonattainment of warmwater habitat (WWH) biological water quality standards.

The upstream-most site (RM 11.81) was found to be in non-attainment of WWH aquatic life use in 2005, due to organic enrichment. Additionally, two sites downstream of Pickerington waste water treatment plant (WWTP) on Sycamore Creek (RMs 4.18 and 2.6) had aquatic life use impairments directly attributable to total dissolved solids (TDS) concentrations in excess of the 1500 mg/l water quality standard.

Because aquatic life use impairment at the Sycamore Creek sites downstream of the Pickerington WWTP was directly attributable to the effluent quality of this single NPDES discharger and potential permit condition related remedies were possible, the partial attainment at RMs 4.18 and 2.6 were categorized as TMDL 4B. This listing categorization initiates a process that requires periodic updates to be made in the Integrated Report by Ohio EPA DSW and provides for a follow-up stream assessment to be carried out once the aquatic life stressors have been mitigated.

A 2009 biological survey of selected sites in Sycamore Creek was commissioned by the City of Pickerington and completed by Envirosience environmental consultants. Biology scores submitted to Ohio EPA indicate that the 2009 assessment documented similar impacts to the macroinvertebrate community and reported partial attainment of WWH at the one site that overlapped the 2005 Ohio EPA assessment, RM 4.18. See Table 5.
The Pickerington WWTP effluent quality had improved by the time of the 2012 Integrated Report, which documented that Pickerington’s drinking water treatment plant had transitioned from ion exchange technology—which was contributing to high TDS at the WWTP—to reverse osmosis which has a relatively lower TDS contribution to the WWTP. Discharge monitoring reports of Pickerington’s WWTP outfall show that TDS concentrations were within permit limits by 2012 and had been substantially reduced from the levels observed in the 2005 survey.

More detail regarding the 4B listing can be found in Section L of the Ohio 2018 Integrated Water Quality Monitoring and Assessment Report, see pp. L-93 through L-95, at the link below (Ohio EPA 2018b).

https://epa.ohio.gov/Portals/35/tmdl/2018intreport/SectionL.pdf

A5.1 – Table 5. Existing Biological Data and Aquatic Life Use Status of Selected Sycamore Creek Sample Locations

<table>
<thead>
<tr>
<th>Site Description</th>
<th>Year</th>
<th>RM</th>
<th>DA</th>
<th>IBI</th>
<th>MIwb</th>
<th>ICI or Narrative</th>
<th>QHEI</th>
<th>Attainment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sycamore Creek @ St. Rt. 204</td>
<td>2005</td>
<td>11.81</td>
<td>4.7</td>
<td>34*</td>
<td>--</td>
<td>Fair*</td>
<td>69.5</td>
<td>NON</td>
</tr>
<tr>
<td>Sycamore Creek DST WWTP @ Hill Rd (lower)</td>
<td>2005</td>
<td>4.18</td>
<td>19.4</td>
<td>48</td>
<td>--</td>
<td>Low Fair*</td>
<td>75</td>
<td>Partial</td>
</tr>
<tr>
<td>Sycamore Creek DST WWTP @ Hill Rd (lower)</td>
<td>2009</td>
<td>4.18</td>
<td>19.4</td>
<td>56</td>
<td>--</td>
<td>28*</td>
<td>69.5</td>
<td>Partial</td>
</tr>
<tr>
<td>Sycamore Creek DST Pickerington WWTP @ Busey Rd.</td>
<td>2005</td>
<td>2.6</td>
<td>20.5</td>
<td>52</td>
<td>7.34*</td>
<td>36</td>
<td>79</td>
<td>Partial</td>
</tr>
</tbody>
</table>

*= denotes a biological score that does not meet the WQS for WWH

A5.2 – Beneficial Use Designations
Ohio Water Quality Standards (WQS; Ohio Administrative Code 3745-1) consist of designated uses and chemical, physical, and biological criteria designed to represent measurable properties of the environment that are consistent with the goals specified by each use designation. The beneficial use designations evaluated as part of this survey are Aquatic Life, Recreation, Agricultural Water Supply, and Industrial Water Supply. Beneficial use designations have been verified for each of the waterbody segments that will be assessed within this study area. Beneficial use designations pertinent for waterbodies in the study area are detailed in OAC 3745-1-26. Sycamore Creek is designated warmwater habitat (WWH) for aquatic life use.

A6 – Project/Task Description
The purpose of this study is to update the 303(d), 4B listing of the Sycamore Creek WAU by evaluating fish and macroinvertebrate communities, stream habitat and water chemistry conditions at three (3) sites in
the Sycamore Creek WAU, a tributary to Walnut Creek in the Scioto River drainage. Data from the study will be used to report on Clean Water Act Section 305(b) trends in the 2020 Ohio EPA Integrated Report and address the 4B categorization of Sycamore Creek.

In addition, this survey provides an efficient opportunity to revisit the aquatic life use attainment status of Sycamore Creek @ St. Rt. 204 (RM 11.8), the only other stream location in the Sycamore Creek WAU that was not meeting its aquatic life use designation in 2005. The cause of low fish and macroinvertebrate community scores in 2005 was attributed to organic enrichment originating from nearby home sewage treatment systems. Note that the 2009 Enviroscience study did not include a reassessment of this stream location. Some of the adjacent large-lot residential areas have been connected to regional Fairfield County sanitary sewers since 2005, therefore it is reasonable to anticipate that a moderate improvement in water quality may have been realized in this reach of Sycamore Creek. If RM 11.8 is found to be in attainment, as well as the two sites downstream of the Pickerington WWTP, this study affords the opportunity to delist this WAU from the 303(d) list of impaired waters.

Sycamore Creek sampling locations are depicted in map(s) and tables included above and in the Appendix.

A6.1 – Project Objectives
The study area is composed of one HUC 12 watershed assessment unit. A total of 3 sampling stations are included in this effort and will provide for an updated assessment of one HUC-12 and one 4B listing (Table 5). Ambient biology, macrohabitat quality and water column chemistry will be collected concurrently from these sites. See Appendix – Tables 6 and 7 for specific details on stream sampling locations and sampling types.

The main objectives of the study are to:

1. Update the 4B categorization of the Sycamore Creek WAU by monitoring the water quality and aquatic life use attainment status of two Sycamore Creek locations downstream of Pickerington WWTP (RM 4.18, Hill Rd., and RM 2.6, Busey Rd.)

2. Re-assess the 303(d) listing status of the Sycamore Creek HUC-12 as a whole by determining the current aquatic life use attainment status of the one additional upstream Sycamore Creek location (RM 12.2) that was found to be in non-attainment of WWH in the 2005 TMDL assessment

A6.2 – Beneficial Use Designations
The beneficial use designations evaluated as part of this survey are limited to updating the Aquatic Life use attainment status. Attainment of the aquatic life beneficial use is determined using results from biological sampling as described on page 8-7 in Ohio EPA (1987).

A7 – Quality Objectives and Criteria
A7.1 – QC Performance criteria for water chemistry
Blanks and duplicate quality control (QC) samples will be collected at rates consistent with the Surface Water Field Sampling Manual for water quality parameters and flows, 2019, herein referred to as Field Manual. Target rates are 5% for the sum of field and equipment blanks and 5% for the sum of duplicates and replicates. The results of these will be evaluated using techniques and thresholds also described in section A of Appendix IV to the Field Manual (2019). That Section describes assessment methodology and
acceptable thresholds for blanks, duplicates, and paired parameter agreement. The project coordinators will plan sampling to ensure collection of an appropriate number of QC samples. The division will also do an annual review of QC sampling rates, rates of blank detects, and duplicate sample qualification by parameter.

A7.2 – QC Performance criteria for biological and habitat data
Gather ambient environmental information (biological and physical habitat) from selected streams to assess aquatic life use attainment and to recommend an appropriate aquatic life use (ALU) (using procedures described in the Biocriteria for Aquatic Life User’s Manual and OAC 3745-1-07).

A8 – Special Training/Certification
DSW has developed an Access database called “TrainTrack” to document initial trainings and refreshers. All staff involved in collecting any type of environmental sample must complete training associated with that sampling method. Supervisors shall ensure staff have the necessary safety and skill set training (initial and refresher training) prior to sampling. Annual chemical sampling refresher training covers a rotating sequence of difference methods, instruments, and other issues pertinent to field sampling. Biological trainings and Quality Assurance (QA) refresher activities are described in the Biological Criteria Manual Volume 3 Ohio EPA 2015b. Initial training and refresher trainings are conducted annually for Ohio EPA staff (both full time and intermittent) who will be collecting biological data and/or habitat sampling.

A9 – Documents and Records
The final Quality Assurance Project Plan (QAPP) will be provided to the appropriate project personnel by email as detailed in the distribution list. As the plan is updated, each person on the distribution list will be sent an email with the most current document. The most current date of revision will be included in the document name and in the header of the document.

The Qualitative Habitat Evaluation Index (QHEI) habitat forms, chain of custody forms, sample submission forms, and field logs will be maintained in their original form and information from those forms will be included in Agency databases. The databases are backed up on secure servers.

Field measurements taken with a YSI® EXO1 sonde will be recorded electronically and uploaded at the end of the day. In the event that a YSI® EXO1 sonde meter is used that does not have datalogging capabilities, a field sheet will be completed and the data will be input manually into the database for storage and dissemination.

The results from samples sent to the Ohio EPA Division of Environmental Services (DES) for analysis will follow the protocol typical to Ohio EPA standard practice. The data will be placed directly into Agency databases that have secure backup and ease of retrieval.

The format for all data recording will be consistent with the requirements and procedures used for data validation and assessment described in this QAPP. Files generated according to applicable and attached standard operating procedures (such as raw data, results of QC checks, problems encountered, etc.) will be documented and reported to the study team.

All communications regarding study plan changes or refinements, such as changes to sites, staff, parameters, etc. will be filed in the Sharepoint project file by the project leader. Other major actions
which might affect the data quality objectives (DQOs), project leader changes, etc. will require an updated QAPP with a new signoff sheet.

A9.1 – Document/record control
The recording media for the project will be a combination of paper and electronic means to document site conditions. Data gathered using paper will be recorded using indelible ink, and changes to such data records will be made by drawing a single line through the error with an initial by the responsible person. Similar methods will be used for electronic data recording.

The Study Team Leader shall retain the most recent version of the QAPP and be responsible for distribution of the current version of the QAPP to the project team. Agency management and the Quality Assurance Coordinator (QAC) will approve updates to the QAPP, as needed. The Study Leader shall retain copies of all management reports, memoranda, and all correspondence between team members identified in Section A. Retention of records should emphasize any deviations from the signed QAPP including the rationale for those changes.

A9.2 – Document storage
The Study Team Leader will maintain a central project file, which will act as a repository for all data collected or generated as part of this project. The project file will include both hardcopy and electronic data and will be stored at the Ohio EPA office. Project photos will be moved to and stored in the Lynx Photo Management System.

All files will be retained by Ohio EPA indefinitely (for a minimum of 10 years).

SECTION B – DATA GENERATION AND ACQUISITION

B1 – Sampling Process Design
Biological, chemical, and physical stream data will be collected during the 2019 field sampling season within the Sycamore Creek WAU. Results from this study will be used to update aquatic life use attainment status for the watershed assessment unit. Data from the study will be used to report on Clean Water Act Section 305(b) trends in the 2020 Ohio EPA Integrated Report.

Biological data collected will characterize any potential aquatic life use impairment. Habitat and water chemistry provide additional information which further inform the biological findings, adding to the weight of evidence approach to help diagnose the cause of any aquatic life or other beneficial use impairments.

B1.1 – Types and numbers of samples required
At each site (see Table 7 and Figure 2) an assessment of water chemistry, stream habitat, and the biologic community will be conducted. Water chemistry grab samples will be collected to assess the concentrations of conventional water quality parameters including alkalinity, total dissolved solids, total suspended solids, ammonia-N, total Kjeldahl nitrogen, nitrate-nitrite, nitrite, chloride, chemical oxygen demand, sulfate, total phosphorus, orthophosphate, dissolved organic carbon, ICP 1 (Al, Ba, Ca, Fe, Mg, Mn, Na, K, Sr, Zn, hardness), ICPMS 1 (As, Cd, Cr, Cu, Ni, Pb, Se), and E. coli. Field-meter derived parameters including dissolved oxygen, pH, temperature, and conductivity will be evaluated using a YSI® EXO1 sonde. The DES analytical templates for stream samples and all of their associated parameters can be found in the Appendix – Table 8.
B1.2 – Design of the sampling
The sampling is designed to include the three previously-impaired sampling locations of the Sycamore Creek WAU (RMs 12.2, 4.18 and 2.6). Site location details can be found in the Appendix – Figure 2 and Table 7.

B1.3 – Sampling locations and frequencies
Chemical water quality and bacteriological samples will be collected during 5 separate sampling runs at all 3 sites. Blanks will be collected at a rate of 5% of the total and duplicate/replicate samples will be collected at a rate of 5% of the total as indicated in the DSW Field Sampling Manual.

B1.4 – Sample matrices
Surface water chemistry samples will be collected at all sites from a representative reach of the water column.

B2 – Sampling Methods
All biological, chemical, data processing, and data analysis methods and procedures adhere to those specified in the Surface Water Field Sampling Manual for water column chemistry, bacteria and flows (Ohio EPA 2019), Biological Criteria for the Protection of Aquatic Life, Volumes II - III (Ohio EPA 1987, 1989a, 2015b), 2015 Updates to the Biological Criteria for the Protection of Aquatic Life, Volume II (Ohio EPA 2015a), and The Qualitative Habitat Evaluation Index (QHEI); Rationale, Methods, and Application (Ohio EPA 1989b, 2006) for habitat assessment.

B2.1 – Stream Habitat Evaluation
Physical habitat is evaluated using the Qualitative Habitat Evaluation Index (QHEI) developed by the Ohio EPA for streams and rivers in Ohio (Ohio EPA 1989b, 2006). The QHEI is a rapid, visual assessment of instream physical habitat quality and is designed to provide a measure of habitat features that generally correspond to those physical factors that affect fish communities, and which are generally important to other aquatic life. Evaluations of type and quality of substrate, amount of in-stream cover, channel morphology, extent of riparian canopy, pool and riffle development and quality, and stream gradient are among the metrics used to evaluate the characteristics of a stream segment, not just the characteristics of a single sampling site.

B2.2 – Biological Community Assessment
Macroinvertebrates will be collected from artificial substrates and from the natural habitats. Qualitative sampling will be conducted in two of the three stream locations (RM 12.2 and 4.2) since their drainage areas are less than 20 mi². This sampling effort consists of an inventory of all observed macroinvertebrate taxa from the natural habitats at each site with no attempt to quantify populations other than notations on the predominance of specific taxa or taxa groups within major macrohabitat types (e.g., riffle, run, pool, and margin). Hester-Dendy artificial substrates will be deployed at RM 2.6 in order to calculate a macroinvertebrate Index of Community Integrity score (ICI). A fish community assessment will be conducted at each sampling location with pulsed DC current. Only one fish pass is necessary to characterize fish assemblages at the two upstream-most sample sites (RM 12.2 and 4.2), since the drainage area is less than 20 mi². Two fish passes will be necessary at RM 2.6 Detailed biological sampling protocols are documented in the Ohio EPA manual, Biological Criteria for the Protection of Aquatic Life, Volume III (OEPA 2015b).
B2.3 – Surface Water

Surface water grab samples will be collected from the upper 12 inches of river water into appropriate containers. Collected water will be preserved using appropriate methods, as outlined in Surface Water Field Sampling Manual for water column chemistry, bacteria and flows (Ohio EPA 2019), and shipped overnight via courier to the Ohio EPA lab for analysis. Field measurements of dissolved oxygen, pH, temperature, and conductivity will be made using a YSI® EXO1 sonde along with all grab samples for surface water chemistry.

B2.4 – Bacteria

Samples are to be collected directly into a sterilized glass or polypropylene (or other autoclavable plastic) bottle. All sampling will adhere to methods outlined in Surface Water Field Sampling Manual for Water Quality Parameters and Flow (Ohio EPA, 2019).

B3 – Sample Handling and Custody

DSW will use Sample Master® to enter information for sample labels and parameters needed for analysis. This system directly connects to the DES Laboratory Information Management System (LIMS) so that the same number can now be used to track a sample from creation of sample runs and labels through DES electronic delivery of data. Sample submission forms are no longer necessary with this new system. Sample labels are transferred via photocopier to label stock that is adhered to sampling containers.

Written Standard Operating Procedures (SOPs) for Sample Master® are available on Ohio EPA’s internal intranet page and are available to external parties upon request. This document describes run creation, addition of samples and parameters, labels and chains of custody, QC samples, field data entry/approval, and final approval of sampling results.

B4 – Analytical Methods

The analytical methods to be used in this study are provided in the Appendix - Table 8 along with the holding times and reporting limits. SOPs for the analytical methods are available on the DES intranet site.

B5 – Quality Control

Five percent of the water samples will be submitted to the lab as field duplicates. Field blanks will occur at a minimum of 5 percent of the water samples. Field instruments will be calibrated daily, using manufacturer guidelines and requirements noted in the Field Sampling Manual for Water Column Chemistry, Bacteria and Flows (Ohio EPA 2019).

B6 – Instrument/Equipment Testing and Calibration, Inspection, and Maintenance

The team leaders have operated and maintained most of the equipment to be used during this project for a number of years. The team leaders will inspect the equipment prior to and during the sampling. The team leaders will ensure that all equipment remains in functional working condition.

The YSI® EXO1 sondes will be calibrated in accordance with standard protocol prior to each day that the equipment is to be used. A standard provided by DES will be used to calibrate conductivity and pH. The oxygen sensor will be calibrated in ambient air. A log book is maintained for each sonde. This log book contains the date of each calibration and standardized pertinent information proving that the device is within specifications. If any of the sonde parameters do not conform to the specifications provided in the standard protocol, the sonde will be repaired or another unit will be used until the sonde is repaired or replaced. The calibration readings as well as the all repairs are entered into the log book.
Other equipment used will follow specifications provided in the biological and habitat methods cited.

B7 – Inspection/Acceptance of Supplies and Consumables

Supplies and consumables will be inspected upon receipt by the field sampling teams. Nearly all of the supplies utilized for this project are maintained and used during the normal business operations of the Ohio EPA. The field team leaders will be responsible to ensure that all sample containers and all needed supplies and consumables are available in advance of all field work. It will be their responsibility to maintain and replenish stock. Consumable supplies include sample containers, preservatives, filters and miscellaneous supplies such as distilled water, disposable gloves, and towels. Field personnel will confirm that all reagents are within applicable shelf life.

B8 – Data Management

B8.1 – Chemistry Samples

The data management process is shared by the Division of Surface Water (DSW) and Division of Environmental Services (DES). DSW uses a specially designed program called Ecological Assessment and Analysis Application (EA3) and DES uses an off the shelf Lab Information Management System (LIMS) called Sample Master® for this purpose. These programs are linked together to allow the transfer of information back and forth between the two systems. EA3 software is used to assign a permanent six-digit station ID number to each sampling location and to create a project name to associate locations so data can subsequently be exported and assessed in groups.

Sample Master® is used to schedule and administer the samples that are submitted to DES for analysis. The sample collector logs into the system and places an order by selecting the appropriate project, stations to be sampled and test group(s) to be analyzed. The program creates a chain of custody form and container labels for each site.

Field measurements are collected instantaneously using a YSI® EXO1 sonde following the methods described in the Field Manual. The multi-parameter units have an internal file storage system that allows for data to be saved in the field by selecting the correct station from a site list created within the instrument’s menu system. Alternatively, parameters can be recorded manually on a paper form. Electronic files are downloaded to an Ohio EPA PC using software supplied by the manufacturer. These files can then be exported to Microsoft Excel and saved on a local or shared network. All agency files are ultimately backed up and housed in the State of Ohio Computer Center (SOCC).

Data files saved in Excel need to be transferred to a table in Sample Master® by the sample collector or delegated data manager. Field data recorded in paper form can also be manually entered into this table. Once entered, the sample collector or data manager validates and approves the results in Sample Master®. Field and lab chemistry data from a site are paired together based on the lab ID number assigned during the sample order process. Field and lab chemistry data are reviewed and approved by DES before being released and uploaded into EA3. Then, in EA3, the sample collector reviews each data sheet for accuracy, validates field QC and adds comments, qualifiers and edits, if necessary, before approving the sheet. This data is then available for use in WQ reports such as the Technical Support Documents.
B8.2 – Biological and Habitat Data Sheets
The original fish, macroinvertebrates and QHEI data sheets are filed at the Ohio EPA Groveport Field Office. Data from the field sheets are manually entered into EA3 using the appropriate data entry screen then validated and approved. The sheets are double-entered to eliminate mistakes.

B8.3 – Data management Summary
The project leader will maintain the project file in a dedicated folder on SharePoint. The goal or objective is to have a complete record of all decisions about modifications of data collection, validation or interpretation between the QAPP signoff and project report completion. To achieve this, the project leader will need to be included on emails or otherwise receive summaries of all actions that meet the above description. Project photos should all be filed in the Lynx photo management system.

SECTION C: ASSESSMENT AND OVERSIGHT
C1 – During Sampling Assessments/Analysis and Response Actions
C1.1 – Assessments
Periodic assessment of field sites, field equipment, and laboratory equipment is necessary to ensure that sampling is efficient, and data obtained meets project objectives. This is an ongoing process that continues every day the project is implemented. There are also larger scale assessments that take place less frequently (e.g., annually). The assessments generally will focus on readiness and consistency of implementation but also are looking for continual improvement opportunities.

Daily assessments (for each day of project activities, as applicable) will include assessment of field equipment and supplies, laboratory equipment and supplies, completeness of the day’s samples and associated field notes, future needs, etc.

Annual assessments will include reviews of data validation and verification, sample completeness and QA/QC review results, quality system targets and processes, status of project resources. These assessments will be completed by the PI and reported to the Project Manager.

C1.2 – Response Actions
Despite best preparations, assessments may find situations requiring corrective actions (CAs). Small day-to-day level assessment findings are often addressed by the individual doing the assessment in the field or in the lab and are common enough to the process so as to not necessitate a formal response.

Laboratory personnel are aware that response may be necessary (many of these will result in changes to the analytical reporting via data qualifiers and comments) if:

- QC data are outside the warning or acceptable windows for precision and accuracy
- Blanks contain target analytes above acceptable levels
- Undesirable trends are detected in spike recoveries or RPD between duplicates
- There are unusual changes in detection limits
- Deficiencies are detected by the laboratory and or project QA officers during any internal or external audits or from the results of performance evaluation samples
- Inquiries concerning data quality are received

Corrective action implementation will be determined by the likelihood that the situation may affect the
quality of the data. Field corrective actions will be brought to the attention of the study team for consideration as to their impact on the data, their potential interest to other sampling teams/subcontractors, any future considerations for process improvement, and for their potential inclusion to the quarterly reports.

Lab corrective actions will follow regular laboratory procedures and SOPs. Any lab corrective action with the potential to affect data quality will be conveyed to the PI by the laboratory. The PI will evaluate if data requires any additional qualifiers and/or if it is usable for its originally intended purpose.

Field corrective actions may include troubleshooting malfunctioning meters, replacing dead batteries, other equipment issues, or issues with site access. The need for correcting any of these issues will be minimized to the best of the field staff’s ability with ample planning and preparation. However, if equipment fails and is unable to be repaired in the field, sampling will be postponed until the equipment can either be fixed or swapped out with functioning equipment. The Sycamore Creek WAU is a very short distance from the Central District Office and the Groveport Field Office, so any potential trip back should not significantly affect the overall length of a field day. Site access issues will be dealt with if they come up. Sites may be relocated if access issues are unable to be resolved.

District staff are also responsible for evaluating field blanks and duplicates in a timely manner and making any corrections or adjustments accordingly to prevent future contamination of samples.

C1.3 – Reporting and Resolution of Issues
Any audits or other assessments that reveal findings of practice or procedure that do not conform to the written QAPP will be corrected as soon as possible. The Study Team and QA Officer will be notified regarding deviations. Management will be contacted as necessary.

C1.4 – Data Completeness
Overall success of the project will require the majority of described sampling resulting in successful useable sample results. Potential data gaps will be monitored as the project progresses and the project schedule will be revised to fill these gaps where they are determined to be significant or to potentially impact the fulfillment of project objectives.

C2 – Reports to Management
Biweekly or monthly oral progress reports are to be provided to management on the survey/study and what steps are being taken to resolve any issues or problems. This may include access problems early on that lead to changes of sites and weather or resource problems during sampling. After the samples have been evaluated, the team leader and project biologists will have a meeting to evaluate the use recommendations. An update to the 305(b) statistics will be generated from this meeting, which will be included in the 303(d) assessment as part of the 2020 Ohio Integrated Water Quality Monitoring and Assessment Report.

The 305(b) statistics update included in the 2020 Integrated Report will contain a discussion of the following:
C2.1 – Use Attainment
Attainment/non-attainment of aquatic life uses will be determined by using biological criteria codified in Ohio Administrative Code (OAC) 3745-1-07, Table 7-17. Numerical biological criteria are based on multimetric biological indices including the Index of Biotic Integrity (IBI) and modified Index of Well-Being (MIwb), indices measuring the response of the fish community, and the Invertebrate Community Index (ICI), which indicates the response of the macroinvertebrate community.

Performance expectations for the basic aquatic life uses (Warmwater Habitat [WWH], Exceptional Warmwater Habitat [EWH], and Modified Warmwater Habitat [MWH] were developed using the regional reference site approach (Hughes et al. 1986; Omernik 1987). This fits the practical definition of biological integrity as the biological performance of the natural habitats within a region (Karr and Dudley 1981). Attainment of an aquatic life use is FULL if all three indices (or those available) meet the applicable criteria, PARTIAL if at least one of the indices did not attain and performance did not fall below the fair category, and NON if all indices either fail to attain or any index indicates poor or very poor performance.

C2.2 – Stream Habitat Evaluation
Various attributes of the available habitat are scored based on their overall importance to the establishment of viable, diverse aquatic faunas. Evaluations of type and quality of substrate, amount of in-stream cover, channel morphology, extent of riparian canopy, pool and riffle development and quality, and stream gradient are among the metrics used to evaluate the characteristics of a stream segment, not just the characteristics of a single sampling site. As such, individual sites may have much poorer physical habitat due to a localized disturbance yet still support aquatic communities closely resembling those sampled at adjacent sites with better habitat, provided water quality conditions are similar. QHEI scores from hundreds of segments around the state have indicated that values higher than 60 were generally conducive to the establishment of warmwater faunas while those which scored in excess of 75-80 often typify habitat conditions which have the ability to support exceptional faunas. Habitat scores are not used alone for the determination of attainment, rather as support to the biological scores which determine impairment.

C2.3 – Surface Water Quality
Surface water quality (chemistry) data will be reviewed for any exceedances of the water quality criteria and possible causes of any impairment noted.

SECTION D: DATA VALIDATION AND USABILITY
D1 – Data Review, Verification, and Validation
Data verification will be conducted by the Study Team with assistance from other DSW staff. This process will confirm that sample results received match up with samples submitted and parameters requested from the lab. The process will also result in summaries of any differences between initial sampling and methods planned in the QAPP and final results reported and available. Differences may result from samples not being collected (due to weather, scheduling, etc.), samples not being submitted (due to accidents like broken containers, or delays resulting in being past holding times, etc.), problems at the lab (methods changing, containers or equipment breaking), or other reasons. It is also possible that additional sampling would take place as a result of field observations/conditions. Any deviations from the QAPP will be documented by the study leader.

DES does the initial validation of all data. DES may qualify data based on laboratory QA/QC alone or with
feedback from the sampler (regarding specific sampling procedures, variable sampling matrix, conditions, blank contamination, duplicate agreement, matrix spike recovery, etc.). DES points out potential QA/QC issues but leaves much of the final data qualification to the sampler/data user (supposing that data may be useable for some purposes and not for others). The data user can evaluate the data given their knowledge of sampling conditions, expected variability given location and matrix, data uses, etc.

All fish, macroinvertebrate, and habitat data are hand-entered into the EA3 database using a double data entry method. This helps ensure issues due to data entry errors are minimized. Final approval of data involves a reconciliation between the paper forms and the electronic data which is completed by the data collector or a database administrator in the Ecological Assessment Unit (EAU). Upon approval in EA3, field and laboratory data cannot be revised without intervention from database administrators in the Agency’s Office of Information Technology Services.

D2 – Verification and Validation Methods

Biological and habitat field sampling results will be verified and validated based on field staff experience and qualifications, and adherence to training and QA/QC procedures for current and new field staff available in Subsection 1, Part A (macroinvertebrates) and Subsection 2, Part A (Fish and Habitat) in Biological Criteria for the Protection of Aquatic Life: Volume III. Standardized Biological Field Sampling and Laboratory Methods for Assessing Fish and Macroinvertebrate Communities (June 2015, available at: http://epa.ohio.gov/dsw/bioassess/BioCriteriaProtAqLife.aspx).

In addition to verifying data completeness, the Study Team will oversee data validation for the project that will include confirmation of sample holding times, proper preservatives, sample containers, analysis methods, QA/QC results (including assessment of results for blanks, spikes, and duplicates), etc. This will also be an ongoing effort, concluding in a data validation summary to be included in the final report.

The Study Team will make final decisions regarding the validity and usability of the data and will evaluate the sample collection, analysis, and data reporting processes to determine if the data is of sufficient quality to meet the project objectives. Data validation involves all procedures used to accept or reject data after collection and prior to use. These include screening, editing, verifying, and reviewing. Data validation procedures ensure that objectives for data precision and bias will be met, that data will be generated in accordance with the QAPP and SOPs, and that data are traceable and defensible. The process is both qualitative and quantitative and is used to evaluate the project as a whole.

The laboratory QA staff will conduct a systematic review of the analytical data for compliance with the established QC criteria using batch and sample QA/QC information including spike, duplicate, and blank results. All technical holding times will be reviewed, the laboratory analytical instrument performance will be evaluated, and results of initial and continuing calibration will be reviewed and evaluated.

Field QC sample results will be evaluated using recently clarified DSW procedures available in Section I of the Surface Water Field Sampling Manual (2019, available at: http://epa.ohio.gov/dsw/document_index/docindx.aspx). The information below was adapted from that document. Much of this work is facilitated by a centralized automated QC data evaluation Excel file. Use of this file is explained in the document “QC Tracking and Data Qualification” available in Sharepoint in DSW Quality Management/Documents/DSW Procedures.
D2.1 - Data Validation Guidelines for QC and Field Samples

For most DSW chemical water quality data, data validation is generally confined to evaluation of blank results, duplicate/replicate results, paired parameter results (defined below) and confirming that samples were properly preserved/prepared (including filtration, etc. - if indicated by the method). Standards for evaluation of analytical results of those QC sample types and general field samples are described in Appendix IV of the Field Manual, Data Management. Data Qualifiers are also explained in the manual.

D3 – Reconciliation with User Requirements

Issues related to biological and habitat data uncertainty, including any patterns of analytical or field QC uncertainties, will be assessed by field staff and their management. For most situations, issues can be addressed with acknowledgement of factors captured in the sample metadata which can confirm, explain, and document the data quality concern. Significant, persistent, or unresolved issues will be brought to the attention of the project Study Team, division QC personnel, and EAU and/or DSW management for further evaluation. This combination of personnel will assess how to best label affected data for storage in the EA3 database and how to eliminate or limit any similar problems going forward. Data qualifiers applied to sample results by DES at the lab and by samplers in the EA3 system will remain with the analytical results both in EA3 and in STORET/Water Quality Portal when the data is transferred to US EPA. This will reflect limitations of analytical results for current and future users of sampling data. Consideration will also be given on how best to memorialize data limitations or anomalies as the data is transferred to other databases, including the WQ Portal, so that future users of the sampling data are aware of any data quality issues or limitations.
APPENDIX

Figure 2. Map of Sycamore Creek Sampling Locations.
Table 6. Summary of Sampling Effort.

<table>
<thead>
<tr>
<th>Type of sample</th>
<th># Sites</th>
<th># Passes</th>
<th>Total #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Communities</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish (Headwater)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Fish (Wading)</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Macroinvertebrate (Qualitative)</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Macroinvertebrate (Quantitative)</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Water Chemistry</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventional (Inorganic Samples)</td>
<td>3</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>Bacteria</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli cultures</td>
<td>1</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 7. Streams, Sampling Locations, and Sampling Types.

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Site Name (as in EA3)</th>
<th>RM</th>
<th>DA</th>
<th>Sampling Type</th>
<th>Lat, Long</th>
<th>County</th>
</tr>
</thead>
<tbody>
<tr>
<td>V08W64</td>
<td>SYCAMORE CREEK @ ST. RT. 204</td>
<td>11.81</td>
<td>4.7</td>
<td>C, B, Mq, F</td>
<td>39.9292, -82.7242</td>
<td>Fairfield</td>
</tr>
<tr>
<td>V08S29</td>
<td>SYCAMORE CREEK DST. PICKERINGTON WWTP @HILL RD. (LOWER)</td>
<td>4.18</td>
<td>19.4</td>
<td>C, Mq, F</td>
<td>39.8708, -82.7603</td>
<td>Fairfield</td>
</tr>
<tr>
<td>V08S28</td>
<td>SYCAMORE CREEK DST. PICKERINGTON @ BUSEY RD.</td>
<td>2.6</td>
<td>20.5</td>
<td>C, MQ, F2</td>
<td>39.8569, -82.7503</td>
<td>Fairfield</td>
</tr>
</tbody>
</table>

B - bacteria sampling
C - chemistry sampling
FT - fish tissue sampling
MQ - macroinvertebrate quantitative
Mq - macroinvertebrate qualitative sampling
F - single pass fish sampling
F2 - two pass fish sampling
Sn - sentinel site
N - nutrient sampling
Sd - sediment sampling
Table 8. List of chemical/physical water quality parameters to be analyzed/measured in surface water from the Sycamore Creek WAU, 2019.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Test Method</th>
<th>Holding Time</th>
<th>Water (RL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alkalinity</td>
<td>USEPA 310.1</td>
<td>14 days</td>
<td>5 mg/L</td>
</tr>
<tr>
<td>Solids, Dissolved (TDS)</td>
<td>SM 2540C</td>
<td>7 days</td>
<td>10 mg/L</td>
</tr>
<tr>
<td>Solids, Suspended (TSS)</td>
<td>SM 2540D</td>
<td>7 days</td>
<td>5 mg/L</td>
</tr>
<tr>
<td>Ammonia-N</td>
<td>USEPA 350.1</td>
<td>28 days</td>
<td>0.05 mg/L</td>
</tr>
<tr>
<td>Total Kjeldahl Nitrogen (TKN)</td>
<td>USEPA 351.2</td>
<td>28 days</td>
<td>0.3 mg/L</td>
</tr>
<tr>
<td>Nitrate-Nitrite</td>
<td>NECi Method N07-0003</td>
<td>28 days</td>
<td>0.1 mg/L</td>
</tr>
<tr>
<td>Nitrite</td>
<td>USEPA 353.2</td>
<td>48 hours</td>
<td>0.02 mg/L</td>
</tr>
<tr>
<td>Chloride</td>
<td>USEPA 325.1</td>
<td>28 days</td>
<td>5 mg/L</td>
</tr>
<tr>
<td>Chemical Oxygen Demand (COD)</td>
<td>Method SM 5220D</td>
<td>28 days</td>
<td>20 mg/L</td>
</tr>
<tr>
<td>Sulfate</td>
<td>USEPA 375.2</td>
<td>28 days</td>
<td>5 mg/L</td>
</tr>
<tr>
<td>Total Phosphorus</td>
<td>USEPA 365.4</td>
<td>28 days</td>
<td>0.02 mg/L</td>
</tr>
<tr>
<td>Orthophosphate (as P)</td>
<td>USEPA 365.1</td>
<td>48 hours</td>
<td>0.01 mg/L</td>
</tr>
<tr>
<td>Carbon, Dissolved Organic (DOC)</td>
<td>SM 5310C</td>
<td>28 days</td>
<td>2 mg/L</td>
</tr>
<tr>
<td>ICP 1 (Al, Ba, Ca, Fe, Mg, Mn, Na, K, Sr, Zn, Hardness)</td>
<td>USEPA 200.7</td>
<td>6 months</td>
<td>Varies</td>
</tr>
<tr>
<td>ICPMS 1 (As, Cd, Cr, Cu, Ni, Pb, Se)</td>
<td>USEPA 200.8</td>
<td>6 months</td>
<td>Varies</td>
</tr>
<tr>
<td>pH</td>
<td>USEPA 150.1/Field Meter</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Conductivity</td>
<td>SM 2510B/Field Meter</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Dissolved Oxygen (mg/l and % saturation)</td>
<td>Field Meter</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Temperature</td>
<td>Field Meter</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>E. coli</td>
<td>SM 9223B (Quanti-Tray)</td>
<td>8 hours</td>
<td>10 MPN/100 mL</td>
</tr>
</tbody>
</table>

Table 9. Safety Contacts and Hospital Locations.

<table>
<thead>
<tr>
<th>Safety:</th>
<th>County Sheriff Offices:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODNR Wildlife Officers:</td>
<td>County Sheriff Offices:</td>
</tr>
<tr>
<td>Fairfield County – Tony Zerkle (614) 902-4210</td>
<td>Fairfield County – (740) 652-7900</td>
</tr>
<tr>
<td>Licking County – Patrick Muldovan (614) 902-4214</td>
<td>Licking County – (740) 670-5555</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hospitals:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Southern portion of study area / Fairfield County</td>
<td>Northern portion of study area / Licking County</td>
</tr>
<tr>
<td>Diley Ridge Medical Center</td>
<td>Mount Carmel East</td>
</tr>
<tr>
<td>7911 Diley Road</td>
<td>6001 E Broad Street</td>
</tr>
<tr>
<td>Canal Winchester, OH 43110</td>
<td>Columbus, OH 43213</td>
</tr>
<tr>
<td>(614) 838-7911</td>
<td>(614) 234-6000</td>
</tr>
</tbody>
</table>
REFERENCES

___ 1989a. Addendum to Biological criteria for the protection of aquatic life: Volume II. User’s manual for biological field assessment of Ohio surface waters. Division of Water Quality Planning and Assessment, Surface Water Section, Columbus, Ohio.

___ 1989b. The qualitative habitat evaluation index (QHEI): rationale, methods, and application. Division of Water Quality Planning and Assessment, Columbus, Ohio.

