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RULE/
AUTHORITY: OAC 3745-300-07(D)(1)(e) and 3745-300-07(D)(6)(c)

QUESTION: When the 95% upper confidence limit of the arithmetic mean (95%
UCL) is calculated for certain data sets, the result can greatly exceed
the maximum value in the original data set. What are some valid
approaches to analyze problematic data sets?

ANSWER: In order to cover the wide variety of sampling conditions that are
encountered during a VAP Phase II property assessment, a set of
regulatory requirements have been promulgated to guide sampling
activity. The VAP requirements for sampling environmental media are
found in Paragraph (D)(1)(e) of Rule 3745-300-07 of the OAC.

This  rule requires that sampling data must be representative of actual
site conditions, and accounts for any spatial or temporal variation in
the concentrations of chemicals which may be expected to occur.
Sampling of all appropriate environmental media must be sufficient to
fulfill the requirements set forth in OAC 3745-300-07(D)(2) through
(D)(10).  In particular, OAC 3745-300-07(D)(6)(c) requires that data
sets be “comprised of a sufficient number and quality of samples as
to derive a normal, log-normal, or [an]other applicable frequency
distribution.” Alternately, for sites where sampling activities can be
reliably biased to the location of the  highest concentration (see OAC
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3745-300-07(D)(6)(c)(ii)), then the volunteer may use the maximum
concentration from a data set of at least three points. 

Under highly variable field conditions there is no overall prescription
for how many samples to collect; the number of samples collected is
almost entirely situational. However, as long as the extent of
contamination is well characterized and the sampling is conducted in
accordance with the VAP rules, the number of samples is not, of
itself, a crucial factor. Yet, for these same reasons, sampling for
environmental data often can yield small data sets.

One of the fundamental assumptions of risk assessment is that any
receptor will tend to “average” its exposure to a contaminant source
and this averaging is related to the type and extent of its habitat and
activities, which also affect the frequency of exposure. Therefore, the
arithmetic mean of a set of measures of contaminant concentrations
is commonly taken as an estimate of the exposure point
concentration. In order to reflect the variance in the contamination,
risk assessments typically use the 95% upper confidence limit of the
arithmetic mean (95% UCL).  The 95% UCL is an estimate of the
value that, 95% of the time, the true mean will not exceed.  

When the number of samples is low, and variation in data is high, the
determination of a 95% UCL may yield a value substantially higher
than the maximum concentration. Most importantly, these estimates
are critical factors in the decision-making process leading up to
whether or not a remedial action is necessary. This fact alone
underscores the importance that the conclusions drawn from
environmental data sets are objective, accurate, and reproducible.

Issues in the analysis of environmental data sets

Environmental data sets are often small in size. Data sets which have
20 or fewer data points challenge the ability of  parametric confidence
limits to accurately reflect an upper confidence limit.  The low number
of samples may not have a distribution, and even if a distribution does
exist, it tends to yield poor estimates of the true mean and variance.
In addition, these data sets can have non-normal distributions, which
may also exhibit a considerable degree of skewness. These
seemingly aberrant characteristics may result from samples for which
an analyte was not detected or quantifiable (i.e., a non-detect).
Environmental data sets commonly have data points which are
spatially autocorrelated (i.e., non-independence of data points due to
their signficant spatial relationships) due to topographic relationships,
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an inappropriate sampling scale, and extreme values that may or may
not be outliers.

Once a sampling plan has been executed, and the samples analyzed,
the investigator may attempt to fit the data to a standard probability
distribution. While it is difficult to exactly fit a standard probability
distribution to field data, these models can often provide reasonable
fits, which are evaluated by goodness-of-fit tests. A probability
distribution (e.g., normal, lognormal, exponential) can streamline the
modeling of an environmental data set in that each probability
distribution provides a unique set of formulae for the mean, variance,
and percentiles of the data set. However, the minor deviation of the
field data distribution from a standard probability distribution can
produce spurious results in subsequent calculations.

For example, when distribution-based 95% UCL methods such as that
of Land’s H (Land, 1975), or Student’s t are applied to skewed data
sets which are only approximately lognormal or normal, respectively,
a common result is a  wider confidence interval than that which would
be determined from a less-skewed, true lognormal, or normal data
set. This is in part because the H or t parameter in these applications
is taken from a generalized, theoretical distribution function. The high
variation contained in a specific environmental data set can force the
point estimate out of bounds with respect to the actual range of the
data. Therefore, it is important to be fully aware of the utility and
limitations of the data set at hand. These issues can be addressed a
priori by considering data quality standards to make sure that
questions about the site can be answered, based on a sample size
that gives sufficient resolution.

Exploratory Data Analysis

Due to the wide variety of settings and chemicals of concern in the
environment, each environmental data set has a different
characteristic degree of variation. This is why it is important to
consider the overall structure of the data set, and particularly the
presence and location of outliers. An outlier is a data point that does
not conform to the pattern or variance structure of the overall data
distribution. For example, the presence of one outlier may indicate
equipment malfunction, a manual error in recording a data point, or
some other random source of error. However, two or more outliers
can indicate that the level of spatial or temporal variation in the
environment was higher than anticipated, and therefore not well-
characterized by the sampling. Sometimes outliers may represent the
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so-called “hotspot”. A hotspot is a location with extremely high
concentrations of the chemical of concern, relative to its immediate
surroundings. There is also the chance that a single data set with
several outliers is actually composed of multiple, statistically-
independent subsets of data.

An environmental data set which exhibits skewness may be modeled
with the lognormal distribution, which provides some relief for these
complications due to extreme values. Since the lognormal distribution
can easily incorporate and otherwise model extreme values, there is
a chance that statistical outliers will be included in the model.

Calculation of univariate statistics such as the sample mean, median,
range, variance, and coefficient of variation will give the investigator
an idea of the spread and skewness of data. Many statistical and
spreadsheet software packages are capable of calculating a full range
of univariate test statistics. A box-and-whisker plot will display this
information graphically and give some preliminary indication of the
presence and location of data points which may also be candidates
for outlier analysis. Normal probability plots for both raw and log-
transformed data will help to determine whether or not straightforward
parametric approaches will be valid. In the event that the data
distribution is not normal, the analyst should try various
transformations (logarithmic, arcsin-square root, etc.) in an attempt to
normalize the data distribution.  Goodness-of-fit tests facilitate fitting
field data to a wide variety of distributions (e.g., Weibull, Beta,
Gamma), and can be used as another check in judging the fit of data
to normal or lognormal  distributions. The presence or absence of
spatial structure or topography can both affect a particular
measurement. The consideration of physical setting in the data
validation process is enhanced by a complete set of field notes and
sampling maps.

Several approaches to estimation of the 95% UCL of the mean are
outlined in this document; it is assumed that the investigator uses
exploratory data analysis (EDA) techniques to guide initial
assumptions about the structure of the data set. This EDA will allow
the analyst to maximize objectivity in the treatment of the data. If
outliers are identified, there may be some basis for removing these
points. Indeed, it may be the case that without the outliers, a new
distribution may be more appropriate. The analyst should approach
outlier analysis with extreme caution and fully document any
alterations made to the data set. Whether or not to remove outliers is
outside of the scope of this TDC; a wide variety of statistical texts are
available for consultation on this matter.



VA30007.03.016 TECHNICAL DECISION COMPENDIUM

Page 5 of  12

Calculation of 95% UCLs

i. Parametric approaches
If the underlying distribution of data is normal, then the calculation of
the 95% UCL is straightforward. In the case that the distribution is
lognormal with some degree of skew, then the investigator should
consider using the Land method (Land, 1975) or consult the USEPA
guidance document The Lognormal Distribution in Environmental
Applications (Singh et al., 1997).

OAC 3745-300-07(D)(6)(c)(i) directs the investigator to use peer-
reviewed statistical methodology for normal or lognormal distributions,
or as stated earlier in this paper, default to the maximum
concentration value form a data set comprised of at least three points
(see OAC 3745-300-07(D)(6)(c)(ii)). However, if the data set is
distribution-free, then the investigator may want to explore
nonparametric methods of analysis. The nonparametric methods are
not presently widely used, yet address the problems typically
encountered when using parametric methods to obtain 95% UCLs.
These nonparametric approaches would be considered by VAP risk
assessors to be an alternative to a 95% UCL, and acceptable for
review as long as full documentation is provided.

ii. A nonparametric method to calculate the estimated 95th

percentile
Data sets which display neither normal nor lognormal distributions
should be analyzed with nonparametric (also referred to as
“distribution-free”) techniques. In general, nonparametric techniques
rely on a ranking of the data set to determine percentiles. A non-
parametric methodology adapted from Gilbert (1987) has been used
in the calculation of a 95% UCL, and is appropriate for data sets with
>20 points (L. Sirinek, personal communication, 2000). This data
analysis procedure is best carried out on a computer spreadsheet
program.  A step-by-step procedure for the calculation of a
nonparametric  95% UCL follows a data set (Table 1) which
represents the concentration of a hypothetical chemical of concern in
soil:
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Table 1

Rank Conc. 

(mg/kg)

Percentile

1 70 0.64

2 70 0.64

3 70 0.64

4 70 0.64

5 70 0.64

6 70 0.64

7 70 0.64

8 70 0.64

9 70 0.64

10 70 0.64

11 70 0.64

12 70 0.64

13 70 0.64

14 70 0.64

15 70 0.64

16 70 0.64

17 1400 0.68

18 1425 0.72

19 1510 0.76

20 1600 0.80

21 4500 0.84

22    4880 0.88

23 4985 0.92

24 7350 0.96

25 7500 1.00
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1) Data are ranked in ascending order. For a data set with 25 points,
the first rank is the lowest concentration (1), and the 25th rank is the
highest concentration. Calculate the percentile for each data point by
dividing its rank by 25, which is the total number of data points. In this
procedure, it is customary to count non-detect data points. The “ties”
are counted as separate observations and constitute a single
percentile, as opposed to an averaged percentile. Non-detect data
points are considered to be in the range of zero to the analytical
lower-detection limit. The single point value estimate of each non-
detect is defined as one-half of the analytical lower detection limit.

2) Calculate the arithmetic mean from the data set. This would be the
sum of all twenty-five numbers, divided by 25. In this example, the
arithmetic mean is 1450.

3) Determine the rank for the arithmetic mean by interpolation. This
is done by locating the mean between the data points which lie above
and below the calculated arithmetic mean. These data points
“bracket” the arithmetic mean. In this example, the percentiles of
ranks 18 (1425) and 19 (1510) are 0.72 and 0.76, respectively. Since
1450 is between 1425 and 1410, linear interpolation is used to
determine the percentile of the arithmetic mean. A proportion can be
set up to determine the percentile of the arithmetic mean:

1425(0.72)-1 = (1450)(x)-1

Solve for x to get 0.73

4) The data point (u) whose rank represents the 95% confidence level
on the percentile of the arithmetic mean is given by this equation:

u95% UCL = p(n+1) + Z1-" [np(1-p)]½

Where p is the percentile of the arithmetic mean calculated in step 3,
Z1-" is the one-sided Z variate at an alpha level of 0.95, which is
1.645, and n is the number of samples in the data set. For this
example, this calculation yields the rank 22.675.

5) By interpolation, the estimated 95% UCL concentration for the data
set in this example is 4950 mg/kg.

This example illustrates how a non-parametric procedure can yield an
upper-bound limit on the basis of the percentile and rank of the
arithmetic mean.
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iii. Nonparametric method for estimating the confidence interval
on the upper quartile of a distribution
For particularly intractable data sets with less than 20, but more than
7 data points, another procedure is available for calculating a value
that approximates the 90 to 95 percent confidence interval about the
upper quartile of a continuous distribution (Conover 1980). The
following guidance on how to conduct these calculations assumes
some prior knowledge of probability distributions, and the operation
of Crystal Ball® (Decisioneering Incorporated), or Excel® (Microsoft
Corporation) software. This is accomplished by restricting the upper
bound probability level of the confidence interval about the upper
quartile:

Pr(X(r) # xp # X(s)) = 1 - "   (1)

where p = 0.75 (i.e., the upper quartile) and the term (1 - ")
determines the upper-bound (one-tail) confidence interval. The
distribution of equation 1 is approximately binomial; the cumulative
binomial distribution that is used in this determination can be either
read off of Table A3 in Conover (1980), calculated with Crystal Ball®,
or Excel® software. The parameters for Crystal Ball® users are as
follows:

(1) Select a Binomial Distribution for an assumption cell.
(2) Enter 0.75 for p, which is the probability of the successful

outcome for a given trial
(3) Click on Preferences in the Binomial Distribution window, then

select Cumulative distribution.
(4) Place the mouse on the density function (i.e., the coloured bar

as in a bar graph) above the integer of interest; the cumulative
probability for Bin(n,p) will appear above the mouse pointer.
Adjust significant digits to not less than 3 places.

(5) Write down the cumulative probability for each integer value up
to and including the  highest rank, which is n, the number of
samples.

The same calculation can be made in Excel® with the function
BINOMDIST (Number successes, Number trials (n), Probability of a
successful outcome (p), Cumulative). The cumulative distribution is
calculated for each trial, up to and including the total number of trials,
n. The probability, p, is equal to 0.75, the upper quartile. The
cumulative option is set to “TRUE”.  The Excel® user needs to then
calculate the cumulative probability for each trial (denoted Xi), X0 to
Xn.
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To illustrate this procedure, an example was adapted from Conover
(1980). Assume for the purposes of this example that we have a
distribution of soil arsenic concentrations with n=15. The samples are
independent and there is no spatial correlation among the datum. The
ranked data is listed below in units of mg arsenic per kg dry soil:

Table 2

Rank Arsenic (mg/kg)

1 16.4

2 32

3 53.5

4 56.8

5 71.6

6 98.6

7 103.4

8 148.7

9 185.8

10 274.1

11 274.8

12 286.5

13 305.6

14 329.4

15 859.0

The cumulative binomial probability distribution is calculated for each
binomial “trial” up to n=15, with p=0.75; or, Bin(15, 0.75).
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Table 3

n trial (Xi)   3Bin(15,0.75)

15 0 0

1 0

2 0

3 0

4 0.0001

5 0.0008

6 0.0042

7 0.0173

8 0.0566

9 0.1484

10 0.3135

11 0.5387

12 0.7639

13 0.9198

14 0.9866

15 1.0000

We will use the ranked data in Table 2 and the cumulative
probabilities in Table 3 to balance the two sides of equation 1.
Reading down the cumulative probability column in Table 3, the
probability 0.0566 is selected as being the closest to 0.05, and is
termed ". The “trial” associated with this lower probability limit is 8,
which is designated “r” (as in X(r), the data point with rank r ). The
probability closest to the upper probability limit of 0.95 is 0.9198,
which corresponds to  the 13th  “trial”, which is designated as “s” (as
in X(s), the data point with rank s) . In order to account for rank
rounding errors, both r and s are increased by 1. This adjustment
yields the ranks 9 and 14, which are the lower and upper bounds of
the (1 - ") confidence interval, respectively. The data corresponding
to these ranks are looked up in Table 2 of this example and are
(185.8, 329.4). Therefore, we can describe this confidence interval as:
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“the interval from 185.8  to 329.4 mg/kg arsenic, inclusive, is a
94.34% confidence interval for the upper quartile.” 

Yet, the arithmetic mean of a distribution is commonly used to
represent the exposure point concentration. Note that the arithmetic
mean (i.e., 206.4 mg/kg) of the data used in the foregoing example is
within the bounds of the confidence interval, yet is closer to the lower
bound. Although the mean may not always fall on the upper quartile,
numerous simulations with highly-skewed data sets of similar size
(i.e., n=15), show that the arithmetic mean tends to fall within the 67th

to 80th percentile range.

At the user’s discretion, Equation 1 can also be used to describe the
confidence interval for any pth quantile (� p 0 [0,1]) of interest. The
previous example does this and uses interpolation to determine the
percentile and rank of the arithmetic mean for data sets with more
than 20 samples. The present example can be used to guide the use
of percentiles other than the 75th for the calculation of the confidence
intervals for data sets with at least seven, and fewer than 20 data
points. The user will then have to recalculate a new cumulative
probability distribution, based on the percentile and rank of  the
unique arithmetic mean.

In any case, it is nevertheless important to consider the impact of
hotspots on small data sets. The presence of hotspots can make
even normally robust nonparametric procedures yield spurious
results, too. Apparently, these situations would merit more sampling
to better characterize the nature of the contamination.
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SUMMARY: Under VAP rules, the Volunteer is required to adequately sample all
environmental media which may contain chemicals of concern.  What
constitutes adequate sampling may differ with each situation, the
nature of the contamination, and the physical setting of the property
to be assessed.  Yet, adequate sampling may in some cases yield
small data sets with less than 20 points.  An evaluation that includes
exploratory data analysis and proper application of parametric or non-
parametric techniques is recommended to determine the true
tendency of the data set, in terms of confidence intervals and their
limits.

OHIO EPA
CONTACT: For any questions concerning this issue, please contact the VAP

central office at (614) 644-2924.


