June 2005

TDM Transformation Tool (T3)

Technical Documentation

Introduction

ENVIRON

This document describes the structure of the T3 tool and the programs it uses to process raw
TDM data and generate CONCEPT inputs. It also contains instructions for adding the ability to
process new networks with the tool, and on modifying the inputs and settings for T3 execution.

This document accompanies the network-specific documentation and speed adjustment

documentation to form the complete documentation package for the T3 tool.

T3 uses the open source PostgreSQL database along with several shell scripts and per] programs
to complete the TDM data processing. These tools are freely available for numerous Linux
platforms, and may be used without licensing fees.

T3 Execution

The syntax for executing T3 is:

| £3 <database> <run control file>

The execution of the T3 tool is controlled by a single run control file. The run control file is
formatted as an XML file containing sections for basic setup, network activity files, and

transforms to be applied. An example of a run control file is shown below.

<?xml version="1.0" encoding=“utf-
<t3>
<databage name="t3" />
<network
state="Indiana"
name="NIRPC"
conceptname="NIRPC"
formaf="NIRPCY
/>
<output directory="output" /»
<volumes:>
<loadfile filename
startdate
enddate
am_starttime
am_endtime
pm_starttime
pm_endtime
opl_starttime
opl_endtime
op2_starttime
op2_endtime
/>
<gapacityfile filename =
<linksfile filename =
</volumess
<speeds>
<gpeed_curves filename

81I?>

base_directory="/home/john/ladco/t3_projects/Indiana/NIRPCT

"N2QO02DAT . DRFY
"g1/01/2002"
"12/31/2002"
"0eg0"
"GSSS!I
IllSGOU
"1759“
"0900l!
"1459%
"1800"
1!0559!!

g0 o8 # 080 0% o8 0

"NZOOZCAP.csv" /=
"n021links.dbf" />

= "gpeed_curves.txt"

C:\Documents and Settings\dape_user\My Documents\Conformity\SIP\Ozone SIF Appendices\T3_technical documentation.dec

1

June 2005 ENVIRON

dimensions

"eurve number?
/>

«gurve _types filename
<coefficients filename

"curve types.txt® />
tcoefficients.txt" /=

FLI

</speeds>
<trips>
<tripfile filename = "starts.txt®
startdate = "Ql/01/2002"
enddate = "12/31/2002¢
am_starttime = "0600°
am_endtime = "¢859"
pm_starttime = "1500%
pri_endtime = "1759%
opl starttime = “0900*
opl_endtime = "1459%
op2_starttime = "1800°
op2_endtime = "0559"
/>
</trips=>
<transforms>
ccounty filename = “county_xref.txt®
. format = "gpace"
/>
<taz county filename = "taz_county_xref.txt" />
<hpms filename = "hpms_scaling.txt"
dimengions = "country state fips county fips func_class factor"
/>
<areatype filename = "areatype.txt" />
<roadwaytype filename = "roadwaytype.txt"
dimensions = "func_class road type factor?
/> ‘
</transforms=>
</t3=> '

The specific entries in the run control file are as follows:

13 none root element

{required)

database t3 PosigreSQL database name

(required)

network 3 ' | contains elements for state, network name,

(required) CONCEPT network name, network format specifier,
and base directory location

output directory t3 location (relative to base directory) for output files

(required) '

volumes t3 grouping for volume data file definitions

(required)

ioadfile volumes contains entries for file name, start date, end date, and

{depends on network) other seitings specific to the load data importer for the
network

capacityfile (and others) | volumes contains settings for other files required for the specific

{depends on network) network

linksfile volumes filename for file containing link data (if required for

{depends on network) specific network) : :

trips t3 " 1 grouping for trip data file definitions

C\Documents and Settings\dape_user\My Documents\Conformit\SIP\Ozone SI_? Appendices\TB;technicaludooumentazioa.doc)

2

June 2005

{depends on network)

ENVIRON

tripfile trips contains entries for file name and other parameters as
(depends on network) necessary for network-specific trips data

speeds t3 grouping for speed adjustment instruction files
(required if speed

adjustments are to be

applied)

speed_curves speeds contains entries for file name containing speed curve
{required if speed assignments and the dimensions by which they are
adjustments are fo be defined

applied)

curve types speeds defines the file containing speed curve type definitions
{required if speed

adjustments are to be

applied) ‘

coefficients speeds defines the file containing the coefficients and/or
{required if speed lookup values for BPR-style or lookup-table speed
adjustments are fo be adjustment curves

applied)

transforms 3 grouping for fransformation definitions

{required)

county transforms defines the file name and format of the county cross
{required) reference file

taz_county fransforms defines the file name of the TAZ-cbunty CrOSS
(required if trips data reference file

are included)

growth transforms defines the file name and dimensions of the growth
{optional) factors file

hpms transforms defines the file name and dimensions of the hpms
{optional) adjustment factors file

areatype transforms defines the file name of the area type conversion file
(required)

roadwaytype transforms defines the file name and dimensions of the roadway
(required) type conversion file

Processing Steps

The T3 execution script is contained in the root of the t3 install directory and is called “t3”. The

script executes the following steps:

1. Determine the input format of the network

2. Generate the T3 stored procedures in the database
3. Create the T3 temporary tables in the database

4. Import the run control data to the database

Ci\Documents and Settings\dape_user\My Documents\Conformity\SIP\Ozone SIP Appendicesi\T3_techrical _documentation.doc

June 2005 ENVIRON

5. Import the network data using import programs specific to the network format
6. Import speed adjustment instructions

7. Import the transformation.parameters

8. Calculate VMT and speeds from the raw TDM data

9. Apply transforms to the VMT data

10. Set the appropriate speed adjustment curves on each network link

11. Calculate trips data

12. Generate the RPO formatted records in the database

13, Generate CONCEPT input files

14. | Generate summary reports

Each network has a specific set of programs that read the raw data and convert the data to a
common format in the database. Once the network data has been standardized, all networks are
processed through the same set of programs for the remaining steps. In the final step (Generate
summary reports), there is also a set of customized statements that calculates the raw input VMT
and TRIPS values for each network. These statements are customized to account for the
different formats of data prior to standardization.

T3 Input Files

Fhe-inputs-to-13-(other than-the-run-control-file}-include:
e Raw Network Data

The number and format of these files are dependent on the specific network. File formats
currently handled include dBase (DBF) files, comma-separated ASCII text files, and
fixed column width ASCII text files. The specific column order and column content of
the files are reflected in the custom import programs written for each network.

s Area Type Cross Reference

The area type cross reference file is used to convert the TDM area type codes to the
required RPO Urban Rural classification. The file is formatted as a space-delimited
ASCII text file containing the TDM area type code and the corresponding Urban/Rural
code (UR or RU).. An example area type cross reference file is shown below.

RU
RO
RU
RU
RU
RU
8 RU
10 R,

~J UL WO

C\Documents and Settings\dape_userMy Documents\Conformity\STP\Ozone SIP Appendices\I'3_technical_documentation.doc

4

June 2005 ENVIRON

13
12
13
14
15
17
18

EEEEEEE

e County Cross Reference

The county cross reference file is used to convert the TDM county codes to the
appropriate FIPS codes. The file is formatted either as a space-delimited or comma-
separated ASCII text file containing the TDM county code (integer value followed by
character value), the country code, state/county FIPS code, and the county name. The
first column is used in cases where the TDM county code is an integer, while the second
column is used if the TDM county code is a character value. A portion of an example
county cross reference file is shown below.

4,%,U08,26007, Alpena
1,X,U8,26001,Alcona
11,X,08,26021,Bexrien
80,%,08,26159,Van Buren
70,X,U8,26139,Cttawa
61,X,U8,26121, Muskegon
64,X%,0U8,26127,0ceana
53,%,05,26105,Mason
55,X,0U8,261092,Menominee
22,%,U8,26043,Dickinson
51,%,U8,26101,Manistee
10,%,08,2601%,Benzie
21,X,US,26041,Delta

e TAZ-County Cross Reference

The TAZ-county cross reference provides the county FIPS code and country code for
each Traffic Analysis Zone (TAZ) used in the trips data. The file is a space-delimited
ASCII file containing the TAZ code, the country code, and the state/county FIPS. A
portion of an example TAZ-county cross reference file is shown below.

13 US 26003
12 US 26003
15 US 26003
14 US 26003
17 US 26003
16 US 26003
20 US 26003
18 U3 26003

e Growth Factors

The growth factor file provides growth factors to be applied to the VMT for each link.
Growth factors can be defined by country, state, county, functional class, or link. The run
control file specifies which dimensions will be present in the growth file, and their order.
The file is a space-delimited ASCII file, and the growth factor must be specified last on
each row. The factor is a percentage growth to be applied to the raw VMT value. For
example, a factor of 4.2 would be used to multiply the raw VMT by a growth factor of

CADocuments and Settings\dape_userMy Documents\Conformit\SIP\Ozone SIP Appendices\T3_technical_documentation.dec

5

June 2005 ENVI RON

1.042. An example growth factors file is shown below which specifies growth factors by

county.

Us 27 003 6.88
us 27 019 9.42
Us 27 037 5.22
TGS 27 53 1.71
Us 27 123 1.57
US 27 139 §.10
us 27 163 5,66

+ HPMS Adjustment Factors

The HPMS adjustment file specifies adjustment factors to be applied to the raw VMT to
adjust to HPMS VMT totals. The dimensions and format of the file are the same as the
growth factors file.

¢ Roadway Type Conversion Factors

The roadway type conversion factors file provides instructions on converting the TDM
roadway types to the standard FHW A roadway classes. The conversions are not linear,
allowing a single TDM roadway type to be split into multiple FHWA classes. The
factors can be specified by country, state, county, urban/rural classification, functional
class, and/or link. The dimensions used are specified in the run control file. The
roadway type conversions file must contain at least the roadway type, FHWA class, and
factor value on each line. An example roadway type conversion file is shown below.

R 03
UR 03
RU 03

TR 11
RO 0%
UR 131
RU 03
UR 03
RU 03
UR 03
RU 02
UR 14
RU 06
UR 186
RU 07
UrR 17
RU 0%
UR 11
RU 09
UR 19

WWO®TTIARAHRWE S WWNOHE OO
I e e R
L R N N R W e S B o R S R e B o Rl o B Rl W e B e R R Y

o Speed Adjustment Instructions

T3 does not perform speed adjustments — rather, it passes on speed adjustment
instructions to CONCEPT for processing. The speed instructions are optional — if not
provided, T3 will attempt to pass on the input speeds to CONCEPT without adjustment
instructions. The speed adjustment instructions are contained in three space-delimited
ASCII files containing the assignment of curve numbers to links by link group, functional

C:\Documents and Settings\dapc_user\My Documents\Conformity\SIP\Ozone $1P Appendices\T3_technical_documentation.doc

6

June 2005 ENVIRON

class, and/or area type, details on the curve type for each curve number, and specific
coefficients by speed and volume/capacity ratio for each curve number. Detailed
instructions on the speed adjustment inputs to T3 are provided in the separate document
titled “Speed Adjustments in T3 and CONCEPT.”

T3 Output Files

T3 generates files in the RPO Data Exchange Protocol (RPO-DEP) format for mobile sources.
The output files include:

MobileMA contains the VMT and speed records, as well as any volume and capacity data to
be used in adjusting speeds.

MobileML contains the link definitions including endpoint coordinates and speed adjustment
curve id (if used)

MobileMC contains the speed adjustment curve definitions for CONCEPT to use

Additional detail on these files is available in the RPO Data Exchange Protocol documentation,
and in the document “Speed Adjustment in T3 and CONCEPT.”

Network Data Importers

The custom import programs for each network are located in the sre/import directory. Fach
network has its own directory whose name matches the network format specifier in the run
control file:

CATS

ILDOT (Illinois Statewide)

INDOT (Indiana Statewide)

INDY (Indianapolis)

MIDOT (Michigan Statewide)

MMC (Minneapolis Metropolitan Council)
MNDOT (Minnesota Statewide)

NIRPC

OHIO (Used by all Ohio local networks}
OHIOSW (Ohio Statewide)

SEMCOG

SEWRPC

There are three important sets of programs in each network directory — the script that creates the
network-specific tables to hold raw input data, the scripts that read the raw data into these fables,
and the scripts that convert the data from its raw format to the T3 standard format described in
the next section.

Creating Network-Specific Database Tables

Each directory must contain a SQL script named create_network tables.sql that creates the direct
import tables in the specified database. The tables defined in this script should hold only the

C\Documents and Settings\dapc_user\™My Documents\Conformity\SIP\Ozone SIP AppendicestT3_technical documentation.doc

7

June 2005 ENVIRON

fields from the input files that are required to generate the vmt, link_network, and trips records in
the generalized format described above. No manipulation can be performed on the data as it is
read into these network-specific tables — the raw input values reported in the summary reports
are generated from these tables.

The naming convention for the network specific tables is network_load, network_nodes, and
network_trips (as necessary depending on which files the network provides). For example, the
create_network_tables.sqgl script for the CATS network is as follows:

-- Filename : create_network tables.sgl

-~ Author John Haasbeek, ENVIRON International Corp.
«w Vergion 1.0

-- Description:

Thig file contains the stored procedure to create the tables for the
network input data.

Certain important items are demarcated in the code with the following

-- tags:

-- <TODO> An item that reqguires additional attention.

- <ASSUMPTION> Notes code that is only correct for the given assumption
-- <HARDCODE > Marks values that are hard-coded and could possibly be

moved to a configuration file

CREATE OR REPLACE FUNCTION CreateNetworkTables{) RETURNS INTEGER AS

BEGIN
-~ CATS Network tables
IF {(SELECT COUNT(*} FROM pg_tables WHERE tablename = '‘cats_load'*) > 0)
THEN
DROP TABLE cats_load;
END IE;
CREATE TABLE cats_load
(
start_date DATE NOT NULL,
end date DATE NOT NULL,
start_time INTEGER NOT NULL,
end time INTEGER NOT NULL,
from_node INTEGER NOT NULL,
to_node INTEGER NOT NIULL,
link dist NUMERIC(15,8),
link_capacity NUMERIC (15,5},
n_lanes INTEGER,
link time NUMERIC(15,5),
func_cliass INTEGER,
vubus NUMERIC (15,5},
vlght NUMERIC(15,5),
vmed NUMERIC(15,5),
vhevy NUMERIC(15,5),
vima NUMBRIC(15,5),
vnima, NUMERIC(15,5),
vimb NUMERIC (15,5),
vnimb NUMERIC(15,5)
)i .
CREATE UNIQUE INDEX cats_load pk ON cats_load {start date, end date,
gtart_time, end time, from node, to node);
IF ((SELECT COUNT (*} FROM pg tables WHERE tablename =

THEN

'*eats nodest') > 0)

C\Documents and Settings\dape_uset\My Documents\Conformity\SIP\Ozone SIP Appendices\’l‘3mtechnicalmdocumenmtion.doc

8

June 2005 : E NVIRON

DROP TABLE cats_nodes;
END IF;
CREATE TABLE cats nodeg
(

node_num INTEGER NOT NULL,
x_coord NUMBRIC{15%,5),
y_coord NUMBRIC{15,5),
zone INTEGER,
area_type INTEGER

)i
CREATE UNIQUE INDEX cats_nodes_pk ON cats_nodes {node_num) ;

IF ({SELECT COUNT(*) FROM pg tables WHERE tablename = ''cats trips'') > 0)

THEN
DROP TABLE cats_trips;
END IF;

CREATE TAELE cats_trips
{

start_date DATE NOT NULL,
end date DATE NQOT NULL,
gtart time INTEGER NOT NULL,
end_time INTEGER NOT NULL,
zZone INTEGER NOT NULL,
vehicle type CHAR (2},

orig trips NUMERIC(15,5),
dest trips NUMERIC (15,5}

)i
CREATE UNIQUE INDEX cats tUrips pk ON cats_trips {start date, end date,
start_time, end time, zone, vehicle_ type):

RETURN (;
END;

LANGUAGE plpgsqgl;

Importing the Raw Data

Within each network directory, the import.pl script determines which network-specific files will
be imported. The import.pl script reads the run control file and executes file-specific scripts for
load data, node definition data, and trip data as necessary for each network. Some networks
combine the node definitions into the load data files — for those networks the import.pl script
does not contain a section for node data. The import.pl script passes the file name, time period,
and other required parameters to the individual file importers. The import.pl file for the CATS
network is as follows:

#1/usr/bin/perl

.
file: CATS/import . .pl
author: John Haasbeek, ENVIRON Corporation

#

TDM Transformation Tool - a tool for reading TDM output, applyving variocus types
of data transformations, and exporting data in RPO format for the CONCEPT model.
#
#

Network data import control program for CATS network.

use warnings;

use strict;

uge Flle::Basename;
use XML: :DOM;

my {($controlfile, SexecDir);
my (xp, Sdoc, $rook, @children, S$child);

CADocuments and Settings\dape_user\My Documents\Conformit\SIPAOzone SIP Appendices\T3_techrical_documentation.doc

9

June 2005 ENVIRON
my ($nodename, Sattribs, Sattrib);
my (3volumesnode, s$nodesnode, Stripsnode);
wy Svehicletype;
wy ($dbname, $basedir, $filename, $startdate, $enddate, Ssgtarttime, Sendtime) ;

my @args;

my Susage = "usage: import.pl controlfile\n";
(SHARGV == 0} or die 3usags;

$controlfile = SARGVIC];

$exechir = dirname(30};

¥ instantiate parser
$xp = new XML::DOM::Parserx(};

parse and create tree
Sdoc = $xp-s>parvsefile(Scontrolfile);

start at the document root
$root = $doc->gethocumentElement () ;

now look through the child nodes
gchildren = $root->getChildNodes () ;

foreach $child (@children)
{
my $nodename = $child->getNodeName () ;
if ($ncdename eq "database")
{
$attribg = 3child->getAttributes();
gattrib = Sattribs-sgetNamedItem("name") ;
Sdbname = Sattrib->getvValuel():

elsif (Snodename =g "network")

{

Sattribs = S¢hild~>getAEEriButes (v
Sattrib = $attribs-sgetNamedItem("base directory'};
$bhagedir = Sattrib-»>getvalue(};

elsif ($nodename eg "velumes"')

{

Svolunesnode = Schild;
elsif {$nodename eq "ﬁodesﬁ}
{

snodesnode = Schild;

elsif (Snodename eg "trips")

{
}

Stripsnode = Schild;

}

import volume data

if (defined s$volumesncode)

{
look for files to import
@children = $Svolumesnode->getChildNodes () ;
foreach Schild (@childrxen)

{

if (g$child-=getNodeName{} eq “loadfile")

{

C:Documents and Settings\dape_userMy Documents\Conformity\S1P\Qzone SIP Appendices\T3_technical documentation.doc

10

June 2005 ENVIRON

Sattribs = 8child->getAttributes();
Sattrib = Sattribs-rgetNamedltem{*filename");
$filename = Sattrib->getValuel():

Sattrib = fattribs-s>getNemedItem{"startdate®);
$startdate = fattrib-s>getValue(};

$attrib = Sattribs->getNamedItem{"enddate");
Senddate = gattrib->getvValue():

Sattrib = Sattribs-s>getNamedItem(*starttime"};
$starttime = Sattrib->getValue();

Sattrib = Sattribs->getNamedItem("endtimen);
Sendtime = Sattrib-s>getValuel();

@args = {"SexecDir/load.pl", sdbname, Sbasedir, §$filename,
setartdate, Senddate, $starttime, Sendtime);
system(@args) == 0 or die Ysystem @args failed: g?"

}

import node data

if (defined 3snodesnode)

{
look for files to import
@children = $nodesnode-rgetChildNodes();
foreach 3child {@children)

if (schild->getNodeNane () eg "nodefile™)

{
Sattribs = &child-s>getAttributes()};
Sattridb = Sattribs-s>getNamedltem("filename");
Sfilename = Sattrib->getValuel();

@args = ("SexecDir/node.pl", Sdbname, S$basedir, $filenanme);
system{@args) == 0 or die "system @args failed: 37"

}

it import trips data
if (defined 3$tripsnode)

look for fileg to import
@children = Stripsnode-»getChildNodes{};
foreach Schild (@children)

{

if {$child->getNodeName () eg "tripfile"}

Sattribs = gchild-s>getAdttributes();
$attrib = $attribs->getNamedIitem("{ilename®);
$filename = Sattrib-»getvValuel();

fattrib = fattribs-s>getNamedItem("vehicletype");
$vehicletype = Zattrib-»getValuel() ;

sattrib = Sattribs->getNamedItem ("startdate");
Sstartdate = Sattrib-sgetvalue!);

$attrib = Sattribs->getNamedIltem (Yenddate®);
Senddate = Sattrib->getValue(}:

S$attrib = Sattribs-sgetNamedItem("starttime®);
Sgtarttime = Sattrib-»getvValue(};

C:\Docurments and Settings\dape_userMy Documents\Conformis\SIP\Ozone SIP Appendices\T3_technical_documentation.doc

11

June 2005 ENVIRON

sattrib = Sattribs--getNamedItem{"endtime");
sendtime = Sattrib->getValue{);

@args = ("$execDir/trips.pl", $dbname, Sbasedir, $filename, Svehicletype,
$startdate, Senddate, $starttime, Sendtime);
system{@args) == 0 or die "system @args failed: $?4

Each category of file has an associated generic import script — load.pl, node.pl, and trips.pl.
Each of these scripts reads the designated input file and inserts the data into the specified
database. These files are customized to read different formats of input files — current scripts
exist to handle ASCII files (delimited or fixed column width) and dBase files (. DBF). An
example of a file for importing delimited ASCII data is found in the CATS network directory:

#!/usr/bin/perl

file: load.pl
author: John Haasbeek, ENVIRON Corporation

TDM Transformation Tool - a tool for reading TDM cutput, applying variocus types
of data transformations, and exporting data in RPO format for the CONCEPT model.

This program reads network lcad files for the CATS network.

sSh o4 4k ok R S e g9

use warnings;

uge strict;

use DBI;

my $usége = "usage: load.pl database basedir filename startdate enddate starttime endtime\n";

(SH#ARGV ==) or die Susage;

my (Sdbname, $hasedir, $filename, $startdate, Senddate, S$starttime, Sendtime);

my (@cols);
my {(3conn, $sgl, $sth, Sreturnval);
my (@data, $counter, Snlines);

sdbname = SARGV(0];
Shasedir = SARGV([1};
sfilename = SARGVI[2]:
Sstartdate = SARGV[3];
Senddate = SARGV[4];
sstarttime = SARGVIS];
gendtime = SARGVI6];

connect to database .
Sconn = DRI-»connect ("DRIL:Pg:dbname=3dbname", *#, *") or die "Database connection not made:
SDBI::errstxr\n®; -

turn off autocommiti so we can control our transactiion scopes
$conn->{AutoCommit} = 0;

prepare a sgl statement for the inserts
$sqgl = "INSERT INTO cats_load (start date, end date, start time, end time, \
‘ from node, to node, link_dist, link _capacity, \
n_lanes, link time, \
“fune_clasg, vubug, vight, vmed, vhevy, vima, \
vnima, vimb, vnimb) \
VALUES ('$startdate’, 'Senddate', $starttime, S$endtime, \
?, 07, 07,07, 0%, 7,0\

’

Cr\Documents and Segtings\dape_user\My Documents\Conformit\SIP\Ozone SIP Appendices\T3_technical documentation.doc

12

June 2005 ' ENVIRON

. 1.
TLOR,0%, 7, 7, 0%, 7, R, R

$sth = Sconn-sprepare($sqgl) or die $conn-serrstr;

open data file
open {DATAFILE, "S$basedir/$filename”} or die "Can't open file: $basedir/$filename\n’;

give some feedback)
print PReading data from $filename...\n";

read the lines in the file and insert the data
Scounter = 0;

gnlines = §;

while {<DATAFILE>)

if ($counter > 0}

{
clean up the input line and split it into fields
chomp;
@data = spiit ", ";
if (edata > 0)
{ _ _
insert the new data
$sth->execute ($dataio] , sdatail]l , sdataiz] , Sdatal24], s$datalsl , sdatalio],
sdatais] , sdatafz2}, sdatai3z2)], $data[33], 3datal34}, sdatal28],
sdataiz2g], sdatai3g], sdatai3l])
or die Sconn-serrgtr;
$nlineg++;
give some feedpack and commit the transaction so far
if ((Scounter % 5000} == Q)
{
print * Scounter lines processed\n";
Sconn->commit ;
}
}
}
Scounter++;

}

close the file
¢cloge DATAFILE;

disconnect the database, remember to commit anything left over
Sconn->commit;
Sconn->disconnect ;

print v...finished, imported $

This program uses the perl split command to split each line into tokens separated by a comma.
An example of a file that imports fixed column width ASCII data can be found in the MMC
network directory:

#!/usr/bin/perl

file: load.pl
author: John Haasbeek, ENVIRON Corporation

TDM Transformation Tool - a teool for reading TDM output, applying various types
of data transformations, and exporting data in RPC formabt for the CONCEPT model.

This program reads the load data for the MMC network

HB ok 3 o b ok ok e 3

Ci\Documents and Seftings\dape_user\My Documents\Conformity\SIPAOzoene SIP Appendices\T3_technical decumentation.doc

13

June 2005 ENVIRON

use warnings;
use strict;

use DBI;
my Susages = "usage: load.pl database basedir filename startdate enddate starttime endtime\n";
($#ARGV == 6} or die 3usage;

wy {Sdbname, S$hasedir, $filename, Sstartdate, $enddate, Sstarttime, Sendtime};
my {Sconn, $sgl, &sth, Sreturnval);
my Scounter;

Sdbname = $ARGVIO];
S$bhagedir = SARGVI1];
gfilename = SARGVIZ];
Satartdate = SARGVI3];
senddate = $ARGVI4];
Sgtarttime = SARGVIS];
Sendtime = SARGVI(6];

#f connect to database
Sconn = DBI->connect ("DBI:Pg:dbname=3Sdbname", ", *") or die '"Database connection not made:
SDBI::errstri\n®;

turn off autocommit so we can control our transaction scopes
$conn->{AutoCommit} = 0;

prepare a sql statement for the inserts
Sagl = ®INSERT INTO wmmce_ load (start date, end date, start time, end time, \
a_node, b node, link dist, freeflow time, congested time,
link_capacity, \
area_type, num_lanes, county, road_class, velume) \

VALUES ('$startdate’, 'Senddate!, - S$starttime, Sendtime, \

?] 7 i ? ? e 7 s 2 Py
LI A A S I S N A i A B A A]

Sgth = sconn->prepare($sgl) or die Scomn-»erratr;

open data file
open (DATAFILE, vShasedir/sfilename®} or die "Can't open file: shasedir/sfilenamel\n';

give some feedback
print "Reading data from $filename...\n";

read the lines in the file and ingert the data
Scounter = O;
while (<DATAFILE:)

{
scounter++;
clean up the input line and split it into fields
chomp; .
my S$aNode = gprintf '%4', substr($_, 0, i2};
my $blode = sprintf '%d', substzx($_, 12, 12};

¥

my $linkDist sprintf '%d4', substr($_, 24, 12};
my S$freeTime = sprintf r%d', substr($_, 36, 12};
my $congTime = gubstr{§ , 48, 12);

ScongTime = gpringf '%d', (ScongTime * 100);

my $LlinkCap = sprintf '%d', substr($_, 60, 12};
my SareaType sprintf '%d4d!', substr($_, 72, 12};
my Snlanes sprintf '%d', substr($_, 84, 12});
my Scounty sprintf '%d', substx($_, 96, 12};
my SroadCls gprintf '%d', substr(§ , 108, 12);
my Svolume = gubstr($, 120, 12);

#

insert the new data
$sth-s>execute ($aNode, $bNode, $linkDist, $freeTime, ScongTime, 3linkCap,
Sarealype, SnLanes,

C\Documents and Settings\dape user\My Documents\Conformity\SIP\Ozone SIP Appendices\T3_technical documentation.doc

14

June 2005 ENVIRON

scounty, SroadCls, $volums) or die Sconn-rerrstr;

give some feedback and commit the transaction so far
if {{(Scounter % 5000) == 0)

{

print ' S$counter lines completed\n";
$conn~»commit ;

}

c¢lose the file
close DATAFILE;

disconnect the database, remember to commit anything left over
Sconn->commit;

Sconn->disconnect;

print "...finished, imported $counter lines.\n\n";

As a final example, a program that imports data from a dBase file can be found in the INDY
network directory:

#!/ﬁsr/bin/perl

file: INDY/load.pl
author: John Haasgbeek, ENVIRON Corporation

TDM Transformation Tocl - a tool for reading TDM output, applying various types
of data transformations, and exporting data in RPO format for the CONCEPT model.

This program reads network load files for the Indianapolis MPO network.

HE o2k Ak A Sk 4k o4k 4

use warnings;
use strict;
use DBI;

my Susage = "usage: load.pl database basedir filename zstartdate enddate starttime endtime\n®;
(SHARGV == 6) or die Susage;

my {Sdbname, 'Sbasedir, S$filename, $startdate, Senddate, S$starttime, $endtime);
my {@cols); '

my {(Sconn, $sgl, $sth, Sreturnval);

wy {Sconnz, $dbf, edata);

my ($dirpart, $filepart);

my {Scounter, Snlines);

my {Spostspeed, s$fftime);

my (Slinkgroup};

Sdbname = $ARGVI0];
Shasedir = 3SARGVI[1];
$filename = SARGVI(2];
Sstartdate = SARGVI[3];
Senddate = $ARGVI([4];
$starttime = S$SARGVI[S]:;
Sendtime = SARGVI[E];

S$dirpart=substyr(*$basedir/$filename?, 0, rindex("Shasedir/sfilename®, /%) + 1);
$filepart=substr("$basedir/§filename’, rindex("Shasedir/$filename", "/") + 1):

#

connect to database

dconn = DBI-»>connect ("DBI:Pg:dbname=S$dbname®, *", ") or die "Database connection not made:

SDBI::errstr\n®;

CiDocuments and Settings\dape_user\My Documents\Conformity\S1P\Czone S1P Appendices\T3_technical documentation.doc

15

June 20035 ENVIRON

turn off autocommit 8o we can control our transaction scopes
Sconm~»{AutoCommit} = &; '

prepare a sgl statement for the inserts

$sgl = "INSERT INTO indy load (start_date, end date, start_time, end time,
link id, cg_speed, ff_speed, link_capacity, volume}
VALUES ('S$startdate’, 'S$enddate!', $starttime, Sendtime,

B,0%, 02, 2, 7y

’ 7 L - r !

$sth = Scomn-»>prepare($sqgl) or die $conn-rerrstr;

% open data file {(do not need to control transactions so leave AutoCommit alone)
Sconn2 = DBI-»connect {"DBI:XBase:$dirpart®, ", "} or die "Could not open DBF file:
SDBI: :errstr\n®;

$dbf = Sconn2-sprepare ("SELECT * FROM $filepart") or die $connz-s>ervstr;

sdbf -»execute () or die SconnZ-serrstr;

¥ give some feedback
print "Reading data from Sfilename...\n";

read the lines in the file and insert the data
Scounter = 0§;

$nlines = 0;

while (@data = $dbf->fetchrow_array{))

{

Scounter++;

insert the new data
$gth-s>execute (sdatal0l, $datal8], $datalsl, sdatals], $datals}) or die Sconn-serxstr;
snlineg++;

give some feedback and commit the transaction so far
if ((%countexr % 5000} == 0}

{

print * Scounter lines processed\n®;
Sconn->comnit;

}

close the file
Sconnz->disconnect (};

disconnect the database, remember to commit anything left over
Sconn->commiL; -

sconn->disconnect;

print "...finished, imported S$nline

This program uses two simultaneous database connections — one to read the data from the dBase
file and the other to write the data to the PostgreSQL database.

Two special importers that deserve special mention are the trips importer for MMC
(sre/import/MMC/trips.pl) and the load importer for the Ohio Local networks
(sre/import/OHIO/load.pl). The MMC trips importer parses through a TRANPLAN trips report
and extracts the numeric trip data. The OHIO load importer takes an additional set of inputs that
specify the column locations for certain fields. The order of the fields varies between the
different Ohio local networks — these additional inputs allowed a single script to handle all of the
network load data files without customization. The additional inputs for the field column
positions are contained in the run control files.

C:\Documents and Settings\dapc_nser\My Documents\COnfoﬂnity\SIP\Ozone SIP Appendices\T3_technical_documentation.doe

16

June 2003 ENVIRON

Converting to the T3 Standard Format

Once the raw data have been imported to the network-specific tables, each network directory
contains either one or two SQL scripts that generate the standardized records in the vmt, trips,
and link network tables (described in detail in “Customizing T3 for New Network Formats”
below). All networks have a custom copy of the calc_vmt.sql script, which calculates VMT in a
standard format and generates the link network records. Networks that provide trips data will
also have a copy of the calc_trips.sql script that standardizes the trips data.

CiDocuments and Settings\dape_user\My Documents\Conformit’\SIP\Ozene S1P Appendices\T3_technical_documentation.doc

17

June 2005 ENVIRON

The types of computations the calc_vmt.sql script must accomplish are:
o Convert units of measure to the standard units for the vt table;
e Calculate VMT using vehicle volumes and link lengths;
e Calculate link speeds using link times and link lengths;
e Generate a unique link id from the node identifiers of the endpoint nodes;
o Write multiple records to separate out different vehicle types and link directions (often
the raw import data will have multiple columns for these fields - T3 and CONCEPT

require the different vehicle types and link directions to be represented using separate
records); and

¢ Specify the period type code for the data (e.g., “27” = average weekday)

The calc_trips.sql script is generally simpler, and usually does nothing more that summing trips
across vehicle types (T3 treats trips as total across vehicle types).

Upon completion of these scripts, the VMT, link definition, and trips data are contained in the
standard T3 tables (vmt, link_network, and trips) and are in the T3 standard units of measure.

The code for the cale_vmt.sql and calc_trips.sql scripts is too long to include here — refer to the
scripts in each network directory for specific examples.

Customizing T3 for New Network Formats

—Each-unique network-format requires 2-eustom-elements-in-T3:

1. Custom import formats to read network loads, volumes, link characteristics, and/or
trip data and convert the data to a standard format for T3 processing.

2. A custom statement in the report generator to calculate the raw VMT and TRIPS
totals in the unprocessed input data.

The standard format to which all incoming TDM data are converted consists of three tables, as
described below:

country_code VARCHAR 2 Country code

state_county_fips VARCHAR 5 Statefcounty FIPS code
start_date DATE Start date of the activity
end_date DATE End date of the activity
start_time INTEGER ' Start time of the activity {hhmm)
end_time INTEGER End time of the activity (hhmm)

C:\Documents and Sett.éngs\dapc_user\My Documents\Conforrnity\SIPWOzone SIP Appendices\T3m£echnicalmdoctzfnen€a€ion.doc

18

June 2005

ENVIRON

CHAR

period_type 2 Similar to the emission period types for area
sources (weekday, weekend, Monday, etc)

fink_id VARCHAR 15 Unique identifier for the lnk

direction CHAR 2 Direction code if the link data is provided
separately for each direction (AB or BA)

vehicle_type CHAR 2 TDM vehicle type code

func_class INTEGER TDM functional class code

‘area_type VARCHAR TDM area type code

urban_rural CHAR Urban/rural code (UR or RU)

volume DOUBLE Total volume during period

link_capacity DOUBLE Total capacity of link during period

freefiow_speed DOUBLE Freeflow speed on link during period

congested_speed DOUBLE Minimum congested speed on link during period

vmi DOUBLE Total vehicle miles traveled on link during period

for specified vehicle type

couniry_code VARCHAR Couniry code

state_county_fips VARCHAR State/county FIPS code

stari_date DATE Start date of the activity

end_date DATE End date of the activity

start_time INTEGER Start time of the activity (hhmm)

end_time INTEGER End time of the activity (hhmm}

period_type CHAR 2 Similar {o the emission period types for area
sources {weekday, weekend, Monday, eic)

trips INTEGER Total trips for the county during the time period

country_code VARCHAR Country code

state_county_fips VARCHAR State/county FIPS code

network_name VARCHAR Unigue name for the network

link_id VARCHAR 15 Unigue identifier for the link

direction CHAR 2 Direction code if the link data is provided
separately for each direction (AB or BA)

link_group INTEGER A code used fo group links for speed adjustment

CADocuments and Settings\dape_user\My Documents\Conformity\SIPA\Ozone SIP Appendices\TB;technicalmdocamentation.doc

19

June 2005 ENVIRON

curve assignments

func_class INTEGER TDM functional class code

area_lype VARCHAR 5 TDM area type code

x_from NUMERIC 15,3 X coordinate of start node

y_from NUMERIC 15,3 Y coordinate of start node

x_to NUMERIC 15,3 X coordinate of end node

y to NUMERIC 15,3 Y coordinate of end node

curve _number INTEGER ‘ jSpi:aed adjustment curve number to assign to this
in

The import routines for each network must be placed in the sre/import directory in a subdirectory
whose name (UPPERCASE) matches the network format value provided in the run control file.
Within this network-specific directory, there must be a program named “import.pl” that reads the
network data section of the run control file and calls individual import programs as necessary for
the network. Most networks have at least a links file and a load or volume file. In addition,
some networks have a trips file, and some networks have the links data combined within the
load/volume file.

The user adding the new custom network has numerous options for converting the raw file
formats into the standard formats described above. The existing importers included in the T3
distribution contain examples for reading and processing ASCII text files (delimited as well as
fixed column width) and dBase files. The user can utilize these existing programs as a guideline
and starting point for developing their own importers. Some key issues that were identified

within the 22 networks that were processed in the initial version of T3 were:
» Units (e.g., some networks provided link lengths in tenths of miles).

e Volumes — volumes are generally provided for multi-hour periods, and may be provided
as period totals, or hourly averages over the specified period.

e Trips — are trips provided as total trips, or only starts?
e Are volumes provided for each direction separately?

¢ Often, the TDM data does not contain a single unique link identifier — the user must
construct a link id from the identifiers provided for the endpoints of each link.

Finally, the program summary_reports.pl has a separate section for each network that sums the
total input VMT and TRIPS for each network from the raw input data (i.e., prior to
standardization into the VMT and TRIPS tables).

C\Documents and Settings\dapc_userMy Documents\Conformity\SIP\Ozone SIP Appendices\TB_"technicalwdocurnematéén.dcc .

20

