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Clean Air Markets - Data and Maps Page 1 of 2

Clean Air Markets - Data and Maps

You are here: EPA Home » Clean Air Markets » Data and Maps » Emissions ®» Quick Reports

—— Emissions

- iSSi Py
1980 - 2009 Emissions CAMD Home D&MHome Help Data Definitions Fact Sheet
.4 UnitLevel Emissions
Monitoring Location Facility Level Emissions Quick Report
Level Emissions Your query will return data for 949 facilities and 3322 units.

.,J Quick Reports You specified: Year(s): 2009 Program: CAIRSO2

2010 Emissions FILTER results by clicking on the Filter Data bar.
- . PRINT THIS PAGE using the buttons below.

i Preliminary !J'“' DOWNLOAD ALL DATA using the buttons below (download is limited to 100,000 rows).
=" Level Emissions SORT results by clicking on a column name (once=ascending, twice=descending).

i Preliminary Monitoring There are data caveats associated with the data you have requested. Click the Download Caveats to download the
= Location Level caveats. Click Here to jump to data caveats relevant to this page displayed in a table below.

Emissions

i Preliminary Quick “'New Quick Report :: Print This Page Download All D\a&w;j Report Definitions | Download All Caveats |

W Reports o

v ,
Yﬁ Filter Data (Expand this toolbar to filter your results.)
123456 Next 4 Pages Last (949 records in 10 pages of 100 records)

L J Prepackaged Data Sets
Mj Data Updates AL AMEA Sylacauga 56018 | 2009 . CAIRSO2 12 0.0 21 3,064.2 51,949
Plant i
Shte. **Paciity Name "INV I00 05 | FRBG | Folllonita G ipg MG Tpppis  Measimaso
Place your mouse over AL Calhoun Power SEHe 2000 | caifoz porteq, 12 Topsg 729079 "B,
the u items {0 see Company |, LLC
their instructions.
AL Charles R Lowman - 56 | 2009 | CAIRSO2 12 5,645.0 3,193.0 = 3,496,782.4 34,081,753
AL Colbert 47 | 2009 : CAIRSO2 12 16,524.6 4,424.5 3,242,688.4 31,534,029
AL Decatur Energy 55292 | 2009 | CAIRSO2 12 7.4 108.6 1,466,904.2 | . 24,683,416
Center
AL Discover 55138 | 2009 : CAIRSO2 12 0.0 1.6 8,248
AL E B Harris 7897 | 2009 ;| CAIRSO2 12 6.9 160.3 1,363,345.8 22,940,966
Generating Plant
AL E C Gaston 26 | 2009 | CAIRSO2 12 $102,980.3 @ 10,292.3 = 8,859,466.1 86,349,614
AL Gadsden 7 2009 | CAIRSO2 12 3,925.8 795.3 365,722.4 3,697,799
AL Gorgas 8 2009 : CAIRSO2 12 5,027.7 | 5,373.4 | 5,695,993.9 55,516,562
AL Greene County 10 | 2009 ' CAIRSO2 12 | 31,604.5 4,379.6 | 2,606,753.7 26,034,535
AL Hog Bayou Energy 55241 | 2009 ;| CAIRSO2 12 0.6 15.0 122,357.4 2,058,742
Center
AL James H Miller Jr 6002 | 2009 : CAIRSO2 12 | 62,241.0 7,929.2 | 21,929,157.0 209,144,368
AL Mcintosh (7063) 7063 | 2009 : CAIRSO2 12 0.1 17.3 | 18,263.5 307,320
AL McWilliams 533 : 2009 . CAIRSO2 12 5.2 125.4 1,026,631.0 | 17,273,214
AL Morgan Energy 55293 | 2009 : CAIRSO2 12 93 | 123.1 1,839,149.3 30,947,100
Center i
AL Plant H. Allen 7710 : 2009 : CAIRSO2 12 154 | 279.4 3,054,122.6 | 51,391,560

Go o top of report
Data Caveats

http://camddataandmaps.epa.gov/gdm/index.cfm 9/29/2010
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GAS (Ib/hr) Fumes from | Fumes from 6 Oxidation air Clean gases
one potroom potrooms
N2 1,025,647 6,153,884 4,514 6,158,398
[02 285,454 1,712,725 1,368 1,713,645
C02 413 2,479 3 3,75
1H20 25,375 152,251 82 324,134
H20 (1) - - - 653
SO2 316 1,893 - 95
SO3 - - - -
HCI - - - -
HF 5 32 -
Particulate 5 32 - 1
Mass flow (Ib/hr) 1,337,21 8,023,295 5,967 8,200,687
Volume flow (ACFM 369,11 2,214,685 1,365 1,984,246
Volume flow SCFM')_—) [ 302,48 1,814,887 1,343 1,877,773
Temperature (°F) 189 189 77 98
Pressure (Inch WG) 407.7 407.7 4053 405.3
LIQUID / Absorber Hydroclone Hydroclone
SOLIDS (Ib/hr) recycle Absorber bleed pH loop overflow underflow
Liquid 30,849,560 78,847 25,708 46,671 6,467
Solids _5,444,040 13,914 4,537 4,086 5,291
Total 36,293,600 92,761 30,245 50,757 11,759
Solids concentration 15 15 15 8 45
Density (SG) 1.10 1.10 1.10 1.05 1.34
Flow (GPM) 66,050 169 55 96 18
LIQuUID/ Vacuum filter Filter wash . "
SOLIDS  (Ib/hn) feed water Rinse water Filtrate Gypsum
Liquid 6,467 - 10,530 16,068 929
Solids 5,291 - - 26 5,265
 Total 11,759 - 10,530 16,095 6,194
[Solids concentration 5 - - 0.2 85
Density (SG) 1.34 1.00 1.00 1.0 1.50
Flow (GPM) 8 - 21 32 -
Limestone
LiQuiD/ .
SOLIDS  (Ib/h) Limestone Process water slurry to
absorber
Liquid - 9,757 9,757
olids 3,252 - 3,252
Total 3,252 9,757 13,009
Solids concentration 100 - 25
Density (SG) 2.80 1.00 1.19
Flow (GPM) - - -
LIQUID/ Process water Water to "vr:z:;;l Wat:;:: O)Y::!E:g;:\o;ir
SOLIDS (Ib/hr) intake absorber " gypsur ‘
preparation dewatering cooling
Liquid 174,362 152,973 9,757 10,530 1,102
olids _ B Z z .
Total 174,362 152,973 9,757 10,530 1,102
[Solids concentration - - - - -
Density (SG) 1.00 1.00 1.00 1.00 1.00
Flow (GPM) 348 306 19 21 2
1SO 9001 PR325640.10001, Rev. 2
*@’ WQrkmgToggg'ngs
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Abstract

The introduction of scrubbers as a means of controlling sulfur dioxide pollution from
stationary sources coincided with the implementation of the Clean Air Act of 1970.
Since that time, there have been many policy changes affecting the electricity generation
industry. These changes may be characterized as moving from direct regulation toward
market-based incentives, both in deregulation or restructuring of power markets and
adoption of market-based environmental regulation. These changes provide natural
experiments for investigating whether the form of regulation can alter the rate of
technological progress. Previous literature (Popp 2003, Lange and Bellas 2005) is mixed
on whether advancements as a result of the switch to market-based environmental
incentives have led to lower costs. This paper extends this literature by analyzing
changes in scrubbers’ use of electricity (also known as parasitic load) in relation to
regulatory policy regimes. Results show that restructured electricity markets have led to
a considerable (30-45%) decrease in parasitic load. Conversely, the change to a cap-and-
trade system for sulfur dioxide has not led to a decrease.

*The views expressed in this paper are those of the authors and do not necessarily reflect
those of the Environmental Protection Agency. The authors would like to thank
Nathaniel Keohane and Carl Pasurka for their helpful conversations and suggestions.

Keywords: Market-based regulation, Electricity deregulation, Scrubbers
Subject Area: Costs of Pollution Control (17), Electric Power (34), Environmental Policy
(52)



I. Background
Most proponents of market-based regulation point to the incentives for cost savings as an

important justification for their use. When pollution (in the case of environmental policy)
or electricity (in the case of generation policy) is priced at the margin, plants act to
minimize the cost of producing a certain level of output. Many coal-fired power plants
have flue gas desulfurization units (also known as scrubbers) to control the release of
sulfur dioxide, and to a lesser extent, mercury. Scrubbers draw electricity from the plant,
known as parasitic load, which is estimated to be between 0.7% and 2.3% of total
generation (Keohane, 2006 and EPA, 2000). This load would be valued at approximately
$2.0 million per scrubber, annually, at $0.05/KWh. Fire et al (2004) show the parasitic
load does vary substantially from plant to plant. While market-based environmental
regulation may have spurred reductions in scrubber electricity consumption to better
compete with other abatement options, a similar argument can be made for restructured
(or deregulated) electricity markets in that they allow a generator to profit from any
savings in parasitic load. Concurrently, both changes have provided plants incentives for
energy saving innovation in their use of scrubbers. This paper tests the hypothesis that

these market-based regulations have reduced scrubber electricity use.

Electricity Market Regulation

Until the early 1990s, power plants generally operated as regulated monopolies. States,
through public utility commissions (PUCs), allowed firms (both investor-owned and
municipal) to build power plants and provide electricity to the grid sufficient to meet

demand.! In return, firms were allowed to earn a specified rate of return on the cost of

! Federal projects like the Tennessee Valley Authority were not subject to state level regulation.
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5. EMISSIONS CONTROL TECHNOLOGIES

To meet environmental regulations, it has been regular practice for plant operators to implement emissions control
technologies. Among the typical technologies used in the industry are the three discussed in this section of the
report:

e FGD system

e Particulate control system, e.g., electrostatic precipitators (ESP)

e SCR system

These types of control technologies can consume relatively large amounts of auxiliary power. For example, a wet
FGD system typically requires 2-3% of the gross electrical output of a plant when the unit is combusting a high-
sulfur coal. In addition to general auxiliary power required to operate the apparatus, optimal performance may not
be realized due to natural wear on the system, inadequate maintenance, inefficient operation practices, and/or poor
operating conditions. Small adjustments or modifications can be made to these systems to alleviate a portion of the
electrical requirements necessary to accommodate these inefficiencies. Generally, FGD systems and ESPs are
technologies that can be modified to have the greatest impact on power consumption, while concurrently meeting

emissions collection requirements.**® >’

The modifications to SCR systems generally entail optimizations to reduce flue gas pressure drops. Some
optimizations may be realized in the extensive ductwork usually involved with SCR retrofits and in other cases,
lower pressure drop catalysts are developed by vendors. In lesser amounts, auxiliary power may be reduced by

changes in the vaporization or mixing scheme of the SCR system.

5.1 FGD SYSTEM

Areas and means of potential improvement within an older FGD system are:

e Removal of venturi throat
e Improved flow distribution to lower the pressure drop across FGD
o Spray header operation

e Use of VFDs

SL-009597 PQA_SL_EPA_ Final.doc
Project 12301-001
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Clean Coal Technologies
Wet scrubbers for SO2 control

Wet scrubbers are the most widely used FGD technology for SO2 control throughout
the world. Calcium-, sodium- and ammonium-based sorbents have been used in a
slurry mixture, which is injected into a specially designed vessel to react with the SO2
in the flue gas. The preferred sorbent in operating wet scrubbers is limestone followed
by lime. These are favoured because of their availability and relative low cost. The
overall chemical reaction, which occurs with a limestone or lime sorbent, can be
expressed in a simple form as:

SO2 + CaCO3 = CaS0O3 + CO2

In practice, air in the flue gas causes some oxidation and the final reaction product is a
wet mixture of calcium sulphate and calcium sulphite (sludge). A forced oxidation step,
in situ or ex situ (in the scrubber or in a separate reaction chamber) involving the
injection of air produces the saleable by-product, gypsum, by the following reaction:

S0O2 + CaCO03 + 1/202 + 2H20 = CaS04.2H20 + CO2
Waste water treatment is required in wet scrubbing systems.
A variety of scrubber designs is available including:

e spray tower design where pump pressure and spray nozzles atomise the
scrubbing liquid into the reaction chamber providing large particle surface area
for efficient mass transfer;

o plate tower design where the gas is dispersed into bubbles, which also
provides large sorbent surface area;

o impingement scrubber design where a vertical chamber incorporates
perforated plates with openings that are partially covered by target plates. The
plates are flooded with the sorbent slurry and the flue gas is accelerated
upwards through the perforations. The flue gas and sorbent liquid make
contact around the target plate, creating a turbulent frothing zone to provided
the desired reaction contact;

e packed tower design where the flue gas flows upwards through a packing
material counter-current to the sorbent which is introduced at the top of the
packing through a distributor; and

o the fluidized packed tower design or turbulent contact absorber, which is
similar to the packed tower, except that the packing is fluidized. The turbulence
created keeps the packing material clean and improves the mass transfer
between the flue gas and the slurry liquid.

In the simplest configuration in wet lime/limestone/gypsum scrubbers, all chemical
reactions takes place in a single integrated absorber resulting in reduced capital cost
and energy consumption. The integrated single tower system requires less space thus
making it easier to retrofit in existing plants.

The absorber usually requires a rubber, stainless steel or nickel alloy lining as
construction material to control corrosion and abrasion. Fibreglass scrubbers are also
in operation.

Commercial wet scrubbing systems are available in many variations and proprietary
designs. Systems currently in operation include:

o lime/limestone/sludge wet scrubbers;
o lime/limestone/gypsum wet scrubbers;
o wet lime, fly ash scrubbers; and

http://www.iea-coal.org.uk/site/ieacoal_old/clean-coal-technologies-pages/wet-scrubbers-f...
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W Alr staging for NOx control {overfire air

: and two-stage combustion)

e Bubbling fluidized bed combustion

‘ {BFBC) at atmospheric pressure

g Burner optimisation for NOx control
{excess air control, burner fine tuning)

o Circulating fuidized bed combustion
{CFBC) at atmospheric pressure

## Clean Coal Technologies - home

w#p Combined heat and power (CHP) -
¥ Cogeneration

4% Combined SO2NOx removal processes
@G Cyclone fired wet bottom bollers

5% Dry scrubbers

w Electrostatic precipitators (ESP)

## Fabric fiters (baghouses)

e Flue gas desulfurization (FGD) for 802
control

W Flue gas recirculation for NOx control

2% Fluidised bed combustion (FBC)

W Fuel staging (bumer out of service
{boos), fuel biasing, reburning, or three-
stage combustion)

g High Temperature High Pressure (HTHP)
particulate control

o integrated gasification combined cycle
{GCC)

5% Low NOx burners

W Mechanicalinertial collectors
{cyclones/multicycliones)
o NOx emissions abatemsnt and control by
flue gas reatment
W NOx emissions abatement and control by
primary measures
T Particulate emissions control
“ technologies
g Pressurized Circulating Fluidized Bed
Combustion (PCFBC)
s Pressurized fluidized bed combustion
{PFBC)

#%* Pulverised coal combustion (PCC)

g Regenerable processes for S0O2 control

W Selective catalytic reduction (SCR} for

" NOx control

& Selective non-catalyiic reduction {(SNCR)
for NOx control

%ﬁ%ﬁ“ Sorbent injection systems for SO2 control

W Spray dry scrubbers for 302 control
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e other (including seawater, ammonia, caustic soda, sodium carbonate, i e
potassium and magnesium hydroxide) wet scrubbers. v W Stoker boilers

) “W* Wet scrubbers for particulate control
Wet scrubbers can achieve removal efficiencies as high as 99%. Wet scrubbers

producing gypsum will overtake all other FGD technologies, especially with the 457 Wet scrubbers for SO2 control
increased cost of land filling in Europe and the introduction of increasingly stricter
regulations regarding by-product disposal.

Click on the relevant text below for other FGD technologies:

wet scrubbers

spray dry scrubbers

sorbent injection processes

dry scrubbers

regenerable systems

combined SO2/NQOx removal processes

http://www.iea-coal.org.uk/site/ieacoal_old/clean—coal-technologies-pages/wet—scrubbers-f... 10/1/2010



